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Abstract: Digital influence and trust are central research topics in social media analysis with a plethora of applications
ranging from social login to geolocation services and community structure discovery. In the evolving and
diverse microblogging sphere of Twitter verified accounts reinforce digital influence through trust. These
typically correspond either to an organization or to a person of high social status or to netizens who have been
consistently proven to be highly influential. This conference paper presents a framework for estimating the
probability that the next mention of any account will be to a verified account, an important metric of digital
influence. At the heart of this framework lies a convolutional neural network (CNN) implemented in keras
over TensorFlow. The training features are extracted from a dataset of tweets regarding the presentation of
the Literature Nobel prize to Bob Dylan collected with the Twitter Streaming API and stored in MongoDB.
In order to demonstrate the performance of the CNN, the results obtained by applying logistic regression
to the same training features are shown in the form of statistical metrics computed from the corresponding
contingency matrices, which are obtained using the pandas Python library.

1 INTRODUCTION

At the dawn of the big data or 5V era online so-
cial media constitute a major driver of research and
marketing alike. The main reason it that social me-
dia abound with interactions between accounts from a
wide array of multimodal options ranging from hash-
tags to affective states, geolocation information, and
live video streams. All these alternatives allow the
real time mining of invaluable knowledge regarding
numerous topics of social interest. Most importantly,
regardless of the level of technological sophistication
or the type of data involved, these interaction types
ultimately serve as vehicles for communication. And
along with communication come trust and digital in-
fluence, either explicit or latent.

A major factor towards establishing trust in the
digital sphere is determining whether behind a given
social network account lies an actual real world en-
tity, whether an individual, a hacker group, a multi-
national conglomerate, or any other type of for-
mal or informal organization. Among the most re-
cent cases where this factor was questioned was
the hunt undertaken in 2017 by the journalists of

Counterpunch to approach the alleged freelance re-
porter Alice Donovan(www.counterpunch.org, 2017).
Moreover, arguments for establishing the identity
of an account owner were put forward during the
2013 public discussions regarding the alleged activ-
ities of Twitter eggs, which eventually led to the
dropping of the famous egg avatar, a joking refer-
ence to the bird logo, in favor of a gender neutral
avatar(www.theguadian.com, 2017).

In the aftermath of these discussions Twitter un-
dertook the initiative of introducing a distinction be-
tween its own accounts in order to reinforce the cred-
ibility of a subset of accounts as well as of the tweets
from them. Specifically, Twitter accounts are divided
into the following categories:

• Verified accounts are selected by Twitter and cor-
respond to significant real world entities such as
governments, sports groups, and academic insti-
tutions.

• Unverified accounts are ordinary accounts and
constitute the overwhelming majority of the Twit-
ter ecosystem.

The primary contribution of this conference paper



is a framework for predicting whether the next men-
tion of a Twitter account, whether verified or not, will
be to a verified account. This framework is based on a
convolutional neural network (CNN) implemented on
TensorFlow using keras as a front end in Python. The
mix of structural and functional training features was
exctracted from Twitter in JSON format with Twit-
ter4j over Java and stored in MongoDB, which is ideal
for natively storing and processing documents follow-
ing this format. For comparison purposes a logistic
classifier was also applied on the same dataset using
Python and scikit-learn. The results indicate that the
CNN, trained under three different scenaria, outper-
forms this classifier in terms of a number of statisti-
cal metrics derived from the contingency matrix, most
prominently accuracy, precision, and type I and II er-
ror rates.

The remaining of this work is structured as fol-
lows. Section 2 briefly summarizes recent scientific
literature regarding social network analysis. The ar-
chitecture of the Twitter topic sampler is described
in section 3. Section 4 presents the fundamentals of
the two prediction models used in this work. The re-
lationship between influence, trust, and community
structure in the digital sphere as well as the intuition
behind the training features are examined in section
5, while in section 6 the results obtained from these
models are analyzed. Section 7 recapitulates the main
findings and outlines future research directions. Vec-
tors are displayed in lowercase boldface and scalars in
lowercase. Finally, the notation of this work is sum-
marized in table 1.

Table 1: Notation of this conference paper.

Symbol Meaning
4
= Definition or equality by definition
{s1, . . . ,sn} Set with elements s1, . . . ,sn
|S| Set cardinality
Φ(tk) Set of accounts following tk
Ψ(tk) Set of accounts followed by tk
Var [ f ] (Deterministic) variance of feature f
I [P] Indicator function for predicate P

2 PREVIOUS WORK

In the digital sphere influence revolves around the
fundamental dynamics of the relationship between
two or more accounts comprising a formal or infor-
mal group and essentially pertains to why, how, and
when the online behavior of a subset of accounts is
imitated by the remaining ones in that group (Rus-
sell, 2013)(Gilbert and Karahalios, 2009). There is

a plethora of tools for representing and assessing in
context the significance of these imitation patterns in-
cluding set theoretic similarity metrics such as the
Tversky coefficient (Tversky, 1977), which in con-
trast to the Tanimoto coefficient is asymmetric in the
sense that one set is considered the template and the
other assumes the role of the variant with the two roles
not being interchangeable. Estimating the cardinality
of large sets may not be always easy, thus heuristics
based on the HyperLog method have been developed
(Drakopoulos et al., 2016b). The algorithmic corner-
stone for evaluating influence, digital or otherwise,
is the concept of meme, approximately the cultural
counterpart of a gene (Blackmore, 2000).

The associated concept of trust is more difficult to
model algorithmically, as its has no discernable digi-
tal traits. Nonetheless, there have been approaches for
inferring trust through natural language processing
or matrix factorization techniques combined with the
silent but inherent trust transitivity (Jamali and Ester,
2010). The latter was identified as an important factor
in software engineering and computer security well
before the advent of online social media (Thompson,
1984). An effort to model Web trust with an applica-
tion to Semantic Web has been presented in (Mislove
et al., 2007). Other trust models have been proposed
in (Golbeck, 2005), in (Golbeck and Hendler, 2006)
which also presents a trust inferrence method, and in
(Golbeck et al., 2006) where trust is used as the basis
for movie recommendation. An alternative approach
to trust would be to rely on the fact that it is ultimately
rooted in human emotion. As such, affective comput-
ing techniques such as the ones proposed in (Muller,
2004) and in (Pang and Lee, 2008) attempt to discover
community structure in social media. For an overview
of affective computing see (Picard et al., 2001) or (Pi-
card, 2003).

Given that both influence and trust can be time
evolving, it makes sense to model account-account-
time trust triplets with third order tensors and ap-
ply higher order clustering techniques in order to
determine account groups which bond and consoli-
date or decay over time (Papalexakis and Faloutsos,
2015)(Papalexakis et al., 2014)(Drakopoulos et al.,
2019). Tensors have been already applied to network-
specific problems, for instance for aligning size with
tweet and retweet activity in Twitter (Drakopoulos
et al., 2018) and for extending in PubMed the term-
document vector query model to a term-keyword-
document one (Drakopoulos et al., 2017a).
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Figure 1: System architecture.

3 ARCHITECTURE

In order to implement the proposed analytics of sec-
tion 4 a new system written in Java in NetBeans 8.1
has been implemented. Its main components are the
Twitter4j library which provides a Twitter API for col-
lecting data such as account names, followers, hash-
tags, tweets, and retweets, a MongoDB database for
managing and querying this information in JSON for-
mat, and the prediction models, which have been de-
veloped in Python 3.6. Figure 1 displays the architec-
ture for collecting and analyzing Twitter data.

The primary reason for developing our own client
is the ability to extend it through more Twitter ana-
lytics, in the form of either Pythom modules or Java
jars, in order to facilitate more experiments. A funda-
mental design concept of Twitter is that it is to be in-
tegrated in other applictions. To this end, it provides a
dashboard for authenticated developers to rapidly cre-
ate and register applications.

Twitter4j1 is an open source Java library for har-
nessing Twitter information. Among its other capabil-
ities it provides integration with OAauth for efficient
check of the four Twitter authentication tokens, two
for the developer (consumer key, secret key) and two
(access token, secret token) for the application itself,
as well as with Maven in order to automatically sat-
isfy dependencies. Calls to the appropriate Twitter4j
methods have been placed in the source code of our
social media crawler. In general, there are two main
operational modes for such a crawler, namely account
and topic sampling. The latter was selected since we
are interested in assessing a functional Twitter feature.

MongoDB is a mainstay of the NoSQL move-

1www.twitter4j.org

ment and one of the most popular document databases
designed to store JSON formatted documents in a
schemaless manner and process among others ad hoc
queries, indexing, and real time aggregation. Its ar-
chitecture is distributed, allowing horizontal and geo-
graphical scaling if needed, the former achieved thr-
ough key shrading. Currently transactions are not im-
plemented, leaving data consistency and replication
policy enforcement to the local administrator, leading
to the development of a number of third party con-
sistency control tools. MongoDB supports drivers for
most of the popular programming languages includ-
ing Python, C++, and Java.

Finally, JSON is an open Internet standard de-
scribed in RFC 8259. Originally developed for asyn-
chronous server-client communications, it was widely
adopted for formally describing in human readable
form documents. Its primary data structure is the as-
sociative array, consisting of key-value pairs where
the values may belong to different primitive types in-
cluding strings. Document databases such as Mon-
goDB natively support storing and iteratively or re-
cursively querying JSON structs.

4 PREDICTION MODELS

4.1 LOGISTIC REGRESSION

Logistic regression appears in a number of cases in
economics, statistics and engineering and it is a gen-
eralization of the least squares regression. Recall that
the latter estimates in the presence of noise with a
known distribution the functional parameters of an n-
th order model

p 4
=
[
ϑ0 ϑ1 . . . ϑn−1

]T (1)

are based on a set of m observation vectors

vk
4
=
[
1 x0,k x1,k . . . xn−1,k yk

]T (2)

where each vector contains observations of the n in-
put or independent variables X0, . . . ,Xn−1 and the cor-
responding value of the output or dependent variable
Y . Thus, the possibly over- or underdetermined linear
system of equation (3) is formed

y0
y1
...

ym−1

 =


v0
v1
...

vm−1

p+w (3)

where w is a noise vector of known distribution. Typi-
cally the noise and the model parameters are assumed



Table 2: NoSQL database types.

Type Abstract type Formal description Prominent software
document formatted document JSON, BSON, XML, YAML MongoDB, CouchDB, OrientDB
key-value associative array JSON, BSON, YAML Riak, Amazon Dynamo, Redis
column family wide columns JSON, BSON, XML, YAML Apache Cassandra, KeySpace
graph property graph JSON-LD, RDF, ontologies Neo4j, TitanDB, Sparksee

to be uncorrelated. A more detailed formulation of
the same system is that of equation (4).

y = Xp+w (4)

In the above forumla:

y 4=
[
y0 y1 . . . ym−1

]T (5)

X 4
=


1 x0,0 . . . xn−1,0
1 x0,1 . . . xn−1,1
...

. . . . . .
...

1 x0,m−1 . . . xn−1,m−1

 (6)

Binomial logistic regression imposes a logistic
transformation to the observations using a single out-
put variable. Moreover, the latter is assumed to be
binary, essentially a Bernoulli trial, and logistic re-
gression can compute the probability that the output
variable can take either value or, alternatively, it esti-
mates the model parameters such that

yk =

{
1, pT vk +ηk ≥ 0
0, pT vk +ηk < 0

(7)

Recall that the logistic probability density func-
tion is defined as:

fX (x;µ0,σ0)
4
=

e−
x−µ0

σ0

σ0

(
1+ e−

x−µ0
σ0

)2

=
1

σ0

(
e

x−µ0
σ0 + e−

x−µ0
σ0

)2

=
1

4σ0
sech2

(
x−µ0

2σ0

)
(8)

where the hyperbolic secant is in turn defined as:

sech(β0x) 4=
1

cosh(β0x)
=

2
eβ0x + e−β0x (9)

Alternatively, the hyperbolic secant function can
be defined in terms of the power series:

sech(β0x) 4=1+
+∞

∑
k≡0 mod 2

Ek/2

k!
(β0x)k (10)

where Ek is the k-th secant Euler number2.
2OEIS integer sequences A046976 and A046977.

4.2 CONVOLUTIONAL NEURAL
NETWORK

In addition to the logistic classifier, three convolu-
tional neural networks (CNNs) were created using
keras acting as the front end of TensorFlow. The four
stages of any deep learning model in TensorFlow are:

• Definition. At this stage the architecture of the
network including the number of neurons at each
layer, the connectivity between each layer, and the
number and location of the feedback loops. The
latter are important in determining the memory of
the classifier.

• Translation. This is achieved with the selection
of the loss function and the call of the compile
method which handles model setup.

• Training. Fitting is done with the fit and
evaluate methods.

• Prediction. The model generates actual predic-
tions based on the predict method.

The architecture of the network is defined by the
following template, which is used for each new layer
of processing neurons:

l a y e r s = [ Dense ( 3 ) ]
model = S e q u e n t i a l ( l a y e r s )
model . add ( Dense ( n , i n p u t d i m =m,

i n i t = ’ un i fo rm ’ ,
a c t i v a t i o n = ’ s o f t p l u s ’ ) )

The model.add() method adds an additional hid-
den or output layer which can be fully, densely, or
sparsely connected with the previous one. The synap-
tic weights were initialized with a uniform distribu-
tion in [0,1]. Four activation functions were consid-
ered, the sigmoid, the softmax, the rectifier, and the
softplus. The sigmoid is defined as:

gs(s;β0)
4
=

1

1+ e−β0s = 2tanh
(

β0s
2

)
−1 (11)

The softmax function provides a ranking for the ele-
ments of any real valued data vector

x 4=
[
x0 x1 . . . xn−1

]T (12)



by assigning to each individual x the score:

gm(xk;β0)
4
=

e−β0xk

n

∑
j=1

e−β0x j

(13)

The rectifier or ramp activation function is defined as:

gr(s;β0)
4
= max{0, |β0|s} =

{
|β0|s, s ≥ 0
0, s < 0

(14)

In many scenarios is used a smoother version of gr
termed the softplus function defined as:

gp(s;β0)
4
= ln

(
1+ eβ0s

)
(15)

The softplus function has two interesting properties
with respect to the network training process. First, it
avoids the vanishing gradient problem, which causes
the saturation of a number of synaptic weights in large
neural networks. Moreover, it is the antiderivative of
the sigmoid function:

gp(s;β0) =
1
β0

∫ s

−∞

gs(τ)dτ, β0 6= 0 (16)

This implies that a softplus value essentially com-
prised of a broad spectrum of sigmoid values, which
is less prone to instantaneous spikes caused by an iso-
lated training sample. This results to a smoothed tra-
jectory of the weights in the parameter space, render-
ing the training process more robust.

Eventually, gp was used in all hidden layers,
whereas the logistic activation function was placed
in the output layer. The number of layers, includ-
ing the input and the output layers, was fixed to
[11 : 17 : 11 : 1]. Initially, the first hidden layer maps
the input features in a 50% larger space, which is
big enough to offer sufficient discrimination between
features which are very close in the original space,
but also small enough to avoid overfitting. Then, the
transformed features are mapped back to the original
space. Finally, a logistic regression is applied to these
new features.

The cost function to be minimized was selected to
be the binary cross-entropy, which is suitable as its
name suggests for binary classification problems, us-
ing for training the gradient descent Adam algorithm,
which is an extension of the RMSprop and the Ada-
Grad algorithms by maintaining per-parameter learn-
ing rates and using an averaged second moment to
update the learning rates. Adam is well defined for
large and sparse networks and has low memory re-
quirements. In the source code this choice was de-
clared as:

model . compi le ( o p t i m i z e r = ’ adam ’ ,
l o s s = ’ b i n a r y c r o s s e n t r o p y ’ ,
m e t r i c s =[ ’ a c c u r a c y ’ ] )

Following that, the dataset is split into two parts.
The training part consists of the variables train X and
train y , which contain the features and the output
variable respectively. Along the same line of reason-
ing, the test part comprises of the variables test X and
test y . Once the CNN is trained, its performance is
evaluated, and predictions are generated. The training
phase consists of J epochs, where in each epoch Q
training vectors are driven to the CNN. In the source
code:

model . f i t ( t r a i n X , t r a i n y
nb epoch =J , b a t c h s i z e =Q)

model . e v a l u a t e ( t e s t X , t e s t y )
p = model . p r e d i c t ( t e s t X )
r = [ round ( s ) f o r s in p ]

The training of the CNN plays a crucial role in
shaping its generalization capability. In general, a
golden spot between presenting too few input vec-
tors, in terms of feature variability, or too many dis-
tinguishes a properly trained CNN from either a CNN
which cannot capture all the dimensions of the feature
space or a CNN operating effectively like a dictio-
nary. To this end, the following three scenarios were
selected with respect to the parameters J and Q.

• J = 12500 and Q = 1000 (CNN1 in table 5)

• J = 1250 and Q = 100 (CNN2 in table 5)

• J = 150 and Q = 100 (CNN3 in table 5)

Finally, in order to obtain a better understanding
of the predictor performance, the contingency matrix
is generated using the pandas ml library.

from pandas ml
import c o n t i n g e n c y M a t r i x

cm = c o n t i n g e n c y M a t r i x ( t e s t y , r )
cm . p r i n t s t a t s ( )

5 TRAINING FEATURES

In this section the intuition behind selecting the train-
ing features of the prediction model is given. The lat-
ter is based on the properties of trust, influence, and
community structure. Additionally, the importance of
introducing verified accounts is analyzed. The latter
is rooted in an axiom common in Twitter, and in any
social medium for that matter, stating that:

Axiom 1. Accounts are created equal but hardly re-
main so.

This can be attributed to a number of factors in-
cluding topical variety in the form of hashtags, tweet-



ing frequency, response ratio, or elevated status de-
riving directly from the real world entity or person
behind the account. For instance, a Twitter account of
an established newspaper is typically considered more
reliable and far less prone to fake news posting than
that of an individual netizen. Qualitative metrics for
assessing digital influence in Twitter have been pro-
posed in (Drakopoulos et al., 2016a).

Establishing digital trust is quite complex as it in-
volves a number of psychological variables besides
multimodal interaction. Additionally, it may need to
be re-verified over time, as for instance when a two
factor authentication is required when a trusted ac-
count appears to be active from an unknown location.
At any rate:

Axiom 2. Trust implies communication.

Once trust is established between a group of two
or more accounts, it usually takes one out a small
number of behavioral forms sharing imitation as a key
concept. One option is that an account takes a lead-
ing role and the others tend to imitate its actions, per-
haps with a varying time lag and some minor alter-
ations. Clearly in this case the leader enjoys more
trust than the remaining accounts and the trust rela-
tionships form a star with some possible edges con-
necting non-leading accounts.

Another alternative is the peer group where each
account enjoys a comparable amount of trust from the
other peer accounts. Again, in this case behavioral
correlations tend to appear, although the variance in
time lag may be initially larger since each peer is pos-
sible to do some fact checking by comparing the be-
havior of its peers. However, once a critical size of
peers has performed the same action, the others will
imitate these pioneering peers with a very short time
lag and with much smaller variance. Thus, depending
on the strength of trust connections, in peer groups
imitation might be a two-phase phenomenon. The
trust relationships in this scenario tend to form a cycle
with many cross-connecting edges, or at the extreme
case a clique.

An intermediate case emerges when there is a
leading subgroup within the trust group. In that case
time lags tend to be somewhat smaller, since imitation
is quick both inside the leading subgroup and between
the latter and the remaining group. Functionally, the
leading subgroup plays approximately the role of the
vertex cover as memes tend to be copied quickly from
the center to the periphery.

As mentioned earlier, the key in all three cases is
imitation with a varying time lag. Thus, delayed cor-
relations are bound to appear in the features of the
training set. Therefore, a good classifier is expected
to exploit this critical property by having even a mem-

ory of some kind. This is a significant difference be-
tween the logistic regressor, whose coefficients might
contain a limited reflection of these correlations, and
the convolutional neural network, whose structure and
training process facilitates memory at the expense of
course of a more complicated and slow training pro-
cedure.

As a sidenote, convolutional networks is not the
only class of classifiers with memory. The ordinary
feedforward neural networks assimilate features of
the training set in their synaptic weights, Kohonen
networks or self organizing maps rely on the spatial
clustering of their processing units as a form of mem-
ory as a result of a Hebbian training process, tensor
stack networks depend on the cross training of a for-
est of neural networks, whereas the models relying on
Volterra kernels incorporate memory in the number
and lags of the kernel indices as follows:

g(x) ≈
p

∑
k=1

pk

∑
j=1

h
[
i j,1, . . . , i j,k

] k

∏
s=1

g[n− i j,s] (17)

One more fundamental axiom is:
Axiom 3. Influence implies trust.

This element is important in its own right, but also
allows the indirect determination of trust through in-
fluence. This methodology has been employed in so-
cial network analysis in order to inferr the select the
proper cluster size distribution out of a number of pos-
sible ones generated by various community discovery
algorithms (Drakopoulos et al., 2017c)(Drakopoulos
et al., 2017b).

The data for the prediction models consist of 5000
rows in total, where 1250 of these comprise the train-
ing set and the remaining 3750. Each row contains
features extracted from a single tweet, where every
tweet pertains to presenting the Literature Nobel to
Bob Dylan, a very popular topic at the time the dataset
was collected.

In order to construct the prediction model, a mix
of structural and functional features will be used.
Moreover, the feature set has been augmented with
semantic information: The eleven top trending hash-
tags, shown in table 3, for the day the dataset was
being collected have been retrieved. This was done
on the grouds that they typically carry more seman-
tic information in comparison to an ordinary word
in a tweet, in a relationship similar to the one be-
tween the index and the ordinary terms in a document
(Drakopoulos et al., 2017a). Out of them only #No-
belPrize, #BobDylan, #literature, and #Nobel were
kept as the frequency of the remaining hashtags was
very low.

Thus each row consists of eleven features ( f1 to
f11) plus the value of the output indicator (y):



Table 3: Percentage of appearance of the top trending hashtags.

NobelPrize medicine PremioNobel BobDylan AliceMunro
78.86% 0% 14.53% 89.35% 0%
literature malala Nobel peace physics
56.53% 0% 66.12% 0.04% 0.02%

• f1- f4: Four individual binary indicators, each cor-
responding to whether one of the selected hash-
tags is present in the tweet.

• f5: The number of followers Φ(k) of the account.

• f6: The number of followees Ψ(k) of the account.

• f7: The number of tweets of the account.

• f8: The tweet id.

• f9: The number of mentions in the tweet.

• f10: Is the poster verified?

• f11: Is a verified account mentioned in the tweet?

• y: Is the mention towards a verified account?

Since the tweet id takes large values compared
to the boolean indicators, the latter were rescaled by
multiplying them by 1000 in order to keep the fea-
tures at the same range. This contributes to the accel-
eration and the stability of the training process. Ad-
ditionally, the original dataset is balanced in terms of
value variability, facilitating the easy partitioning to
training and test sets as shown in table 4. If a fea-
ture fk is an indicator, then the number of rows which
is non-zero |I [ fk] = 1| is shown, otherwise its deter-
ministic variance Var [ fk] is shown. Also the output
variable y is treated as an indicator feature. From the
values of table 4 it follows that the partitioning of the
original dataset is correct in the sense of having com-
parable feature variability in both the training and the
test sets.

6 RESULTS

The contingency matrices for the four predictors are
shown in table 5. Additionally, in the same table the
values of a number of statistical metrics based on the
contingency matrix are shown as well as the training
time for each predictor. In the case of the logistic re-
gressor, the time for computing the regression coeffi-
cients is used. Recall that, tp, tn, fp, and fn stand for
true positives, true negatives, false positives, and false
negatives respectively as is customary in data mining
literature.

The most significant statistical metrics which can
be directly computed from any contingency matrix in-
clude:

• Accuracy (ac): Measures how many mentions are
properly classified, regardless of whether an ac-
count is verified or not.

• Specificity (sp): Measures how many of the men-
tions to unverified accounts are actually discov-
ered.

• Precision (pr): Measures how many of the men-
tions classified as relevant to verified accounts are
actually such.

• Sensitivity or recall (rc): Measures how many of
the metions to verified accounts are actually dis-
covered.

• False positive rate or type I error rate (t1): Mea-
sures how many of the mentions to unverified ac-
counts are misclassified.

• False negative rate or type II error rate (t2): Mea-
sures how many of the mentions to verified ac-
counts are misclassified.

• Negative predictive value (npv): Measures how
many of the mentions classified as relevant to un-
verified are actually such.

• The Mattthews correlation coefficient or phi co-
efficient (mcc): Measures the agreement between
the predicted values and the actual ones. It works
even when the number of samples from each cat-
egory are unevely represented in the dataset.

Also, the latter is defined as:

mcc 4=
tp · tn− fp · fn√

(tp+ fn)(tp+ fn)(tn+ fp)(tn+ fn)
(18)

Additional metrics which can be defined in terms
of the ones presented here are the F1 (f1), the in-
formedness (if), and the markedness (mk) which are
respectively defined as:

f1 4=
2

1
rc

+
1
pr

=
2 · rc ·pr
rc+pr

if 4= sn+ sp−1

mk 4=pr+npv−1 (19)

The values of the contingency tables summarized
in table 5 can be interpreted as follows. Regarding
the CNN training process, the less training rows the
network is presented, the more accurate and precise it



Table 4: Dataset partition.

set |I [ f1 = 1]| |I [ f2 = 1]| |I [ f3 = 1]| |I [ f4 = 1]|
train 591 (47.28%) 630 (50.41%) 636 (50.88%) 621 (49.68%)
test 1904 (50.77%) 2003 (53.41%) 1822 (48.58%) 1852 (49.38%)
set Var [ f5] Var [ f6] Var [ f7] Var [ f8]
train 1216.24 2264.11 64.11 399812
test 1693.44 2253.43 53.43 482703
set Var [ f9] |I [ f10 = 1]| |I [ f11 = 1]| |I [y = 1]|
train 37.21 367 (29.36%) 663 (53.04%) 628 (50.24%)
test 33.32 1102 (29.38%) 1897 (50.58%) 1925 (51.33%)

Table 5: Contingency matrices, metrics values, and predictor training time (sec).

model tp tn fp fn ac sp pr rc (sn)
logistic 1285 1236 742 487 0.6727 0.6248 0.6639 0.7251
CNN1 1438 1316 535 461 0.7344 0.7109 0.7288 0.7572
CNN2 1400 1361 490 499 0.7363 0.7352 0.7407 0.7372
CNN3 1365 1472 379 534 0.7565 0.7952 0.7826 0.7187
model t1 t2 npv mcc f1 if mk time
logistic 0.3361 0.3752 0.7173 0.3506 0.6932 0.3499 0.3812 17
CNN1 0.2890 0.2427 0.7405 0.4688 0.7427 0.4861 0.4693 731
CNN2 0.2592 0.2627 0.7317 0.4724 0.7389 0.4724 0.4724 362
CNN3 0.2173 0.2812 0.7337 0.5152 0.7493 0.5119 0.5163 242

becomes at the expense of recall. This might imply
that CNN can develop a limited generalization capa-
bility for a low number of training rows. Moreover,
the type I and II error rates increase with the number
of training rows. However, even their lowest recorded
values might not be considered acceptable for a real
world application. We believe that this can be reme-
died by fine tuning the architecture and the training of
the CNN.

In terms of accuracy, precision, type I and II er-
ror rates, and of the Matthews correlation every CNN
outperforms the standard logistic classfier. Moreover,
in two training cases the CNN achieves better recall.
This can be attributed to the extended training process
of the CNN as well as to the fact that its considerably
more synaptic weights have more memory compared
to the limited one present in the logistic regressors.

7 CONCLUSIONS AND FUTURE
WORK

This conference paper presents the implementation
in keras using TensorFlow as a backend for a con-
volutional neural network (CNN) under three differ-
ent training scenaria in order to predict whether the
next tweet will contain a mention to a verified Twit-
ter account. The dataset is stored as a JSON collec-
tion in a MongoDB instance and comprises of 5000
tweets pertaining to the award of the Literature No-

bel prize to Bob Dylan. In order to demonstrate the
inherent power of CNN, a logistic regression was per-
formed on the same dataset and nine statistical met-
rics were computed from the four contingency matri-
ces. In terms of accuracy, precision, type I and type II
error rates the CNN is superior.

The methodological framework of this work can
be extended in a number of ways. Concerning im-
mediate research, a number of combinations of hid-
den layers and activation functions can be constructed
in TensorFlow in order to find the architecture which
yields the optimum value for accuracy or for other
metrics. Additionally, the deployment of TensorFlow
or a similar tool such as theano or torch7 over a GPU
or an array of GPUs would accelerate the training pro-
cess.

Longer term research objectives include tech-
niques for accelerating the training process by using
additional constraints for pruning highly correlated
synaptic weights, selecting a different objective func-
tion which offers increased interpretability within the
given Twitter context, and augmenting the training
dataset with affective information. The latter is the
primary driving force behind the digital activity of ne-
tizens and, thus, has a plethora of applications to so-
cial media such as evaluating brand loyalty, predict-
ing the outcome of political campaigns, and assess-
ing the digital influence of accounts (Drakopoulos,
2016). As for the synaptic weight constraints, seman-
tic metrics such as Wu-Palmer or Leacock-Chodorow



in conjunction with information extracted from the
features can be used to control the variance of synap-
tic weights in neighboring layers. Finally, when the
mentions to verified accounts are rare, results from
the extreme value theory such as the Fisher-Tippett-
Gnedenko theorem can be used to model the proba-
bilistic behavior of mentions.
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