
S. I . : EMERGING TRENDS OF APPLIED NEURAL COMPUTATION - E_TRAINCO

Evaluating graph resilience with tensor stack networks: a Keras
implementation

Georgios Drakopoulos1 • Phivos Mylonas1

Received: 15 November 2019 / Accepted: 17 February 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
In communication networks resilience or structural coherency, namely the ability to maintain total connectivity even after

some data links are lost for an indefinite time, is a major design consideration. Evaluating resilience is a computationally

challenging task since it often requires examining a prohibitively high number of connections or of node combinations,

depending on the structural coherency definition. In order to study resilience, communication systems are treated in an

abstract level as graphs where the existence of an edge depends heavily on the local connectivity properties between the

two nodes. Once the graph is derived, its resilience is evaluated by a tensor stack network (TSN). TSN is an emerging deep

learning classification methodology for big data which can be expressed either as stacked vectors or as matrices, such as

images or oversampled data from multiple-input and multiple-output digital communication systems. As their collective

name suggests, the architecture of TSNs is based on tensors, namely higher-dimensional vectors, which simulate the

simultaneous training of a cluster of ordinary multilayer feedforward neural networks (FFNNs). In the TSN structure the

FFNNs are also interconnected and, thus, at certain steps of the training process they learn from the errors of each other. An

additional advantage of the TSN training process is that it is regularized, resulting in parsimonious classifiers. The TSNs

are trained to evaluate how resilient a graph is, where the real structural strength is assessed through three established

resiliency metrics, namely the Estrada index, the odd Estrada index, and the clustering coefficient. Although the approach

of modelling the communication system exclusively in structural terms is function oblivious, it can be applied to virtually

any type of communication network independently of the underlying technology. The classification achieved by four

configurations of TSNs is evaluated through six metrics, including the F1 metric as well as the type I and type II errors,

derived from the corresponding contingency tables. Moreover, the effects of sparsifying the synaptic weights resulting

from the training process are explored for various thresholds. Results indicate that the proposed method achieves a very

high accuracy, while it is considerably faster than the computation of each of the three resilience metrics. Concerning

sparsification, after a threshold the accuracy drops, meaning that the TSNs cannot be further sparsified. Thus, their training

is very efficient in that respect.

Keywords Tensor stack network � Tensor algebra � Deep learning � Big data � Higher-order data � Graph mining �
Graph resilience � Estrada index � Clustering coefficient � Multilinear classification � Sparsification � Regularization �
TensorFlow � Keras

Mathematics Subject Classification 05C50 � 05C62 � 05C76 � 68R10 � 94C15 � 97K30

1 Introduction

Graph resilience or graph coherency is one of the main

design parameters in communication networks, since a

large number of operating scenario rely heavily on total

connectivity, namely the ability of any given node to reach

any other node of the system, even at the face of permanent

loss of a number of randomly selected data links.

& Georgios Drakopoulos

c16drak@ionio.gr

Phivos Mylonas

fmylonas@ionio.gr

1 Humanistic and Social Informatics Lab, Department of

Informatics, Ionian University, Corfu, Greece

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-020-04790-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0975-1877
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-04790-1&domain=pdf
https://doi.org/10.1007/s00521-020-04790-1

Modelling in an abstract layer the communication system

as a graph allows the exploration of the resilience property

in a way which is independent of both the technology and

the hardware used and at the same time allows researchers

to concentrate only on connectivity patterns, such as local

triangle density, degree distribution, and the length of the

graph diameter. It should be highlighted that, although the

selection of nodes is straightforward since they represent

points of interest like controllers, terminals, and other

communication equipment, the same is not true for edges.

The latter must be very carefully picked, especially in

wireless and mobile networks, by taking into account

factors including effective communication ranges, realistic

battery lives and energy consumption rates and by avoiding

collisions like the hidden terminal problem. At any rate,

within the context of this article it will be assumed that

modelling is perfect.

Tensor stack network (TSN) is an emerging deep

learning scheme class for big data classification as men-

tioned in Deng and Yu [13] and in Deng et al. [14]. The

functionality of a TSN consists of simultaneously execut-

ing a cluster of ordinary feedforward neural networks

(FFNNs). Each such network can learn from the errors

made by the others in the cluster, effectively accelerating

the training process. Stacking the matrices of synaptic

weights in each TSN layer, whether input, hidden, or out-

put, in order to be able to handle the stacked input and

intermediate data results in the creation of tensors, namely

vectors with three or more dimensions. Thus, the training

process of a TSN essentially breaks down into a repeated

sequence of tensor and matrix operations.

Tensors are ideal for expressing higher-order data with

simultaneous multiple relationships, as is the case of a

graph adjacency matrix, an image, or oversampled cyclo-

stationary data from multiple-input and multiple-output

(MIMO) digital communication systems as described in

Ngo et al. [55] and in Larsson et al. [41]. In fact, matrices

and tensors are the natural input types of a TSN in the same

way vectors are for FFNNs. If an adjacency matrix were to

be inserted into an FFNN, it would have first to be parti-

tioned columnwise, rowwise, or in some other ways gen-

erating a set of training vectors. On the contrary, a matrix

can be a single training element of a TSN whose higher-

order architecture can process a sequence of such elements.

The primary contribution of this article is twofold. First,

four different TSN configurations are created, trained with

a set of synthetic Kronecker graphs, and evaluated in terms

of their classification performance based on metrics

derived directly from the corresponding contingency

tables. Second, once the set of the best synaptic weights is

determined for each configuration, it is sparsified in various

degrees, meaning that synaptic weights with absolute val-

ues below a given threshold are set to zero, and the effect

of this sparsification is assessed based on the same metrics.

As actual resilience of each graph in both the training and

the test datasets is considered a function of the Estrada

index, odd Estrada index, and the clustering coefficient.

The principal motivation behind this article is that the

proposed graph resilience model is both reconfigurable and

higher order. Once new example graphs with certain resi-

lience properties have been either identified in the relevant

bibliography or discovered in practice from actual

deployed communication networks. TSN reconfiguration,

in the form of training, can be conducted efficiently from

an energy-preserving perspective with only a limited

number of selected representative graph samples or during

times when the communication network load is low.

Additionally, the higher-order nature of a TSN can take

into account the effect of various structural factors such as

distance distribution, network diameter, and local cluster-

ing patterns.

The remaining of this work is structured as follows.

Section 2 reviews current scientific literature in the fields of

tensor stack networks, neural networks, tensor algebra, and

graph resilience. The proposed tensor stacked networks as

well as their training process are described in Sect. 3. The

experimental results and the associated analysis are the

focus of Sect. 4, whereas future research directions are

explored in Sect. 5. Uppercase calligraphic letters are

reserved for tensors, uppercase boldface for matrices, and

lowercase boldface for vectors. Finally, the notation of this

article is shown in Table 1.

2 Previous work

Tensor algebra is the next evolutionary step of classical

linear algebra since its focus is vectors of three or more

dimensions and includes matrices and one-dimensional

vectors as special yet valid cases Kolda [38]. Because of

their multiplicative volume and the interdependency

between their elements, tensors belong to big data Fisher

[26] with many tensor operations such as contractions

requiring GPUs for efficiency Shi et al. [66]. Tensors

appear in many knowledge mining applications including

finding higher-order digital influence in social networks as

in Drakopoulos et al. [20], multilinear discriminant analy-

sis as in Zeng et al. [77], an extension of term–document

matrix to term–keyword–document third-order tensor for

PubMed document retrieval based on the fact that key-

words have more semantic information than ordinary terms

Drakopoulos et al. [19], multifactor face recognition

Vasilescu and Terzopoulos [68], and multilayer knowledge

graphs which are represented by adjacency tensors Dra-

kopoulos et al. [21]. Moreover, when the structure of

complex systems is examined simultaneously under

Neural Computing and Applications

123

multiple properties such as connectivity to given vertices

and degree value, then the spectral clustering of the adja-

cency tensor can reveal partitions of these systems Benson

et al. [5]. These partitions can be used to isolate anomalous

segments such as nodes infected by a computer virus

Bengua et al. [4] or nodes with dwindling connectivity

Kumar et al. [40]. Such partitions can take various forms

such as Tucker factorization Papalexakis and Faloutsos

[58] or a variant of higher-order SVD Papalexakis et al.

[59]. For a genetic algorithm for efficiently clustering third-

order tensors containing spatial and linguistic data, see

Drakopoulos et al. [23] and a higher-order tensor decom-

position for large-scale clustering is proposed in Li and

Boulware [44]. Tensors are treated as multidimensional or

stacked memes in Blackmore [9], where some quality

metrics for them are also proposed. The Kronecker tensor

product has been proposed as a reliable way to quickly

generate large-scale, power law graphs which densify at a

nonlinear rate over time as shown in Leskovec [42],

Seshadhri et al. [64], and Seshadhri et al. [65].

TSNs have been proposed among others in Deng and Yu

[13] and in Deng et al. [14]. Because of their inherent

ability to scale with input size, they have been applied to

understanding and separating very large vocabularies as in

Yu et al. [76]. Moreover, they can perform multiway

classification of images with overlapping or translated

objects as in Hutchinson et al. [32], information retrieval of

documents where the term search space is excessively big

as in Deng et al. [15], and speech recognition from huge

samples with considerable voice distortions as in Deng

[16]. A technique for reducing the training complexity by

iteratively decoupling each input data mode is proposed in

Wang et al. [72]. Although TSNs operate on huge data

volumes, they are inherently protected against overfitting

as shown in Grubb and Bagnell [29] where TSNs outper-

form FFNNs trained with the dropout method for the

MNIST, pendigits, and letter datasets. Moreover, in Palangi

et al. [57] TSNs achieve better signal recovery compared to

ordinary FFNNs within a compressed sensing context. The

increased discrimination power of stack generalization in

classification is the focus of Wolpert [73]. Alternative

sparse representations of TSNs are derived in Li et al. [43]

for image classification. Early versions of TSNs which rely

on different principles have been successfully applied to

massive parallel brain simulation Pellionisz and Llinás

[60]. For an extensive survey of alternative TSN archi-

tectures, see Deng [12].

Besides TSNs, a broad spectrum of machine and deep

learning techniques has been implemented over GPUs in

order to accelerate computations. Ordinary FFNNs for

GPUs are described in Jang et al. [34] and in Oh and Jung

[56], cellular neural networks for GPUs are proposed in Ho

et al. [31], convex networks in Deng and Yu [13], self-

organizing maps, namely unsupervised neural networks

based on Hebbian learning rule, in Kohonen [37] and in

Ritter [62], and a detailed spiking network implementation

is described in Nageswaran [53]. This class of neural net-

works simulates brain activity at the biological neuron

level and they form the basis of the Brian simulator, which

is written entirely in Python Goodman and Brette [28]. In

Sutskever et al. [67] a mechanism is described how neural

networks can learn transformations between finite

sequences. An overview of neural network research can be

found among others in Schmidhuber [63].

Graph resilience metrics for communication systems can

be cast in terms of different criteria, which can be broadly

Table 1 Notation used in this

research paper
Symbol Meaning

¼M Definition or equality by definition

s1; . . .; snf g Set with elements s1; . . .; sn

Sj j or s1; . . .; snf gj j Set cardinality

Tk kF Frobenius norm of tensor T

� Kronecker tensor product

�k Tensor multiplication along dimension k

vec Mð Þ Column stacking operator for matrix M

deg vð Þ Degree of vertex v

v1; . . .; vnð Þ Path consisting of distinct vertices v1; . . .; vn

v1; . . .; vnð Þð Þ Path consisting of possibly repeated vertices v1; . . .; vn

Kn Complete undirected graph with n vertices

Bn1 ;n2 Bipartite undirected graph with n1 þ n2 vertices

Cn Undirected cycle with n vertices

Q P½ � Indicator function for predicate P

Neural Computing and Applications

123

divided to structural and functional ones. The former rely

on global or local connectivity patterns, while the latter are

based on the network function such as line of sight (LoS)

Liberti and Rappaport [45], power transmission control Lin

et al. [46], local signal power Wong and Cox [74], or

channel capacity in MIMO systems as in Loyka [48] and in

Biguesh and Gershman [7]. Regarding structural resilience,

there are a number of options. For instance, vertex cen-

trality and graph resilience can be computed from the

resolvent of the graph adjacency matrix Estrada and

Higham [25]. Any structural weaknesses can be revealed

through small or relatively isolated graph communities

through a regularization approach to the density of each

community Kanavos et al. [36]. Metrics can be defined on

routing distances Loguinov et al. [47], degree correlations

Vázquez and Moreno [69], local connectivity patterns as in

Najjar and Gaudiot [54] or in Ip and Wang [33], or on a

weighted combination of paths and triangles given that

both can be expressed in terms of the graph adjacency

matrix Drakopoulos et al. [22]. Local graph density has

been used as an initialization scheme for k-means Drako-

poulos et al. [17]. For a comprehensive study of various

approaches to graph resilience, see Alenazi and Sterbenz

[3].

Deep learning software tools which can natively support

and handle tensors have been recently developed. Perhaps

the most popular is Google TensorFlow which is based on

the dataflow graph computational paradigm with each

vertex of the graph being a tensor as in Abadi [1] and in

Abadi [2]. A Gaussian process generator for TensorFlow,

which greatly facilitates a number of operations such as

thermal noise simulation in digital communication chan-

nels, has been proposed in Matthews [51] and a visual-

ization of TensorFlow computations in Wongsuphasawat

[75]. Keras is a high-level front end for TensorFlow,

allowing the easy handling of entire layers of neural net-

works and computational models as in Gulli and Pal [30].

Tensors are also supported in deep learning frameworks

such as Theano described in Bergstra and et al [6], torch7

proposed in Collobert et al. [11], Caffe put forward in Jia

[35], and the large-scale knowledge graph management

system Pregel proposed in Malewicz [50]. A space-effi-

cient data structure which can store tensors as multiway

arrays is the focus of Kontopoulos and Drakopoulos [39].

A variety of tensor-based solutions for MATLAB has been

developed including Tensor Toolbox, which is based on the

Poblano numerical optimization toolbox described in

Dunlavy et al. [24], TensorLab which places more

emphasis on multilinear signal processing shown in

Vervliet et al. [71], and the machine learning toolbox

MatConvNet of Vedaldi and Lenc [70]. Multidimensional

arrays are natively supported in many current programming

languages but typically tensor operations require

specialized libraries, as is the case of Breeze linear algebra

suite for Scala. Additionally, the MLlib for Spark has

native tensor support as stated in Meng [52].

3 Tensor stack networks

3.1 Generic architecture and training

As it can be seen from Fig. 1, TSNs have a modular

architecture based on layers with identical structure which

can be added or removed at will. Each such layer consists

of two weight matrices W1 and W2 and one third-order

tensor U, as shown in Fig. 2, making TSNs a natural

choice for higher-order data. Specifically, each layer has

the following components:

– Two matrices W1 and W2 with the synaptic weights

connecting the output of the previous layer with the two

sigmoid sublayers.

– A third-order tensor U multilinearly combines the

output of the two sigmoid sublayers and generates the

Fig. 1 General TSN architecture

Fig. 2 Structure of a single TSN layer

Neural Computing and Applications

123

predictions of that layer, which will be fed as input to

the next layer.

Intuitively speaking, a p-th-order real tensor T 2
RI1�I2�...�Ip is a higher-order vector indexed by p integers

and belongs to Rp. However, a tensor need not be real

valued. Formally:

Definition 1 (Tensor) A p-th-order tensor is a linear

transform connecting simultaneously p vector spaces.

Each TSN layer receives its input from the previous

layer, typically codified as a matrix or a vector. Then this

input is split into two parts and driven

The prediction phase for a given layer ends when the

predictions matrix Y are generated by intermixing through

tensor U the output of the sigmoid sublayers h1 and h2:

Y ¼ U�1 h1�h2ð Þ ð1Þ

By definition of the Kronecker tensor product, the resulting

matrix h1�h2 contains each possible product of the ele-

ments of vectors h1 and h2.

Each of the vectors h1 and h2 are the output of the two

parallel sigmoid sublayers operating independently as:

h1

h2

� �
¼

u WT
1 vec Xð Þ

� �
u WT

2 vec Xð Þ
� �

" #
ð2Þ

Notice that these intermediate outputs are independent of

each other. This allows TSNs to gradually discover and

learn from two different feature sets.

The input driving the sigmoid sublayers is vec Xð Þ,
namely the vector resulting from stacking the columns of

input matrix X to a very long single vector. Since the

synaptic weights are fixed during the prediction phase,

TSNs yield their prediction in a straightforward fashion.

During the training phase, the local error gradients with

respect to U, W1, and W2 are determined. The selected

solvers applied a regularization approach in order to avoid

numerical errors or overfitting similar to the one used for

ill-conditioned linear systems as in Golub et al. [27] and in

Bishop [8]

Aþ l0Ið Þx ¼ b ð3Þ

The regularization hyperparameter l0 shifts the entire

spectrum of A away from zero at the expense of an inexact

solution. An alternative to (3) would be the modified linear

system:

Aþ Dð Þx ¼ b ð4Þ

In (4) the diagonal matrix D offers a more flexible way for

regularizing the original linear system.

3.2 Implementation

The Keras package is a high-level front end for Ten-

sorFlow which allows the easy creation and manipulation

of TSN layers and their initialization. In general, in order to

create a deep learning model in Keras four steps are

required, namely definition, translation, training, and

prediction.

During the definition stage, the overall TSN architecture

is defined. This includes the number of layers, whether they

are sparse or not, and the connectivity between them. Each

layer can be added with the model.add () method. Trans-

lation entails selecting the loss function and calling the

compile.add () method to handle TSN setup. Then, it fol-

lows the compile step where the model.fit () and

model.evaluate () methods are called. At the end of the

TSN training pipeline comes prediction, where the

model.predict () method is called and generates the actual

predictions.

For each layer the nonlinear activation function was the

softmax u �ð Þ, which is often used in order to generate

ranking scores of the elements of a vector s as:

u skð Þ¼M eskPn
j¼1 e

sj
ð5Þ

The loss function for each TSN selected was the binary

negative cross-entropy K. This is a common selection for

binary classification problems, since it is based on mis-

classification penalties instead of arbitrarily set scores.

Specifically, if p is the probability mass function of the

training set and q the target probability mass function, then

for a training set of c samples:

K ¼M 1

c

X
u

X
v

q vjuð Þ log p vjuð Þ ð6Þ

Each layer was structurally an identical copy of the others.

If L ¼ 6561 and C ¼ 512, then the dimensions for the

input matrix X were L� L, for matrices W1 and W2 were

L2 � C, and for U were C � L� L. L is the number of

vertices for each of the graphs in training, testing, and

validation datasets, whereas C is the number of internal

features the TSN could explore in each sigmoid sublayer.

Finally, since the number of graphs in each dataset is 40,

the entire dataset was fed to the TSN during each epoch.

4 Results

4.1 Overview and assumptions

The objectives of this section are:

Neural Computing and Applications

123

– To describe the assumptions underlying the experimen-

tal methodology.

– To present the dataset used to derive the results.

– To explain how the various TSNs were evaluated in

terms of classification.

– To explore the effects of sparsification to the TSNs,

once they have been properly trained.

The underlying assumptions made in the methodology

development and analysis of the results are the following.

Undirected graphs are a very common model for logistics

or biological networks, the primary reason being they

typically based on flow or a flow-like property such as

commodity supply. These properties clearly have direction

which does not usually change, unless a major structural

modification takes place. On the contrary, in most com-

munication networks information usually moves along both

directions between two vertices, even asymmetrically, e.g.

as the case in mobile communication networks with the

normal and the reverse channels.

Assumption 1 Graphs are assumed to be undirected.

Additionally, since the aim is to derive a time-efficient

resilience classifier, it makes sense to assume that con-

nectivity in a communications system remains constant

during the classification procedure, assuming of course a

properly trained TSN, and for a time interval sufficient for

the purposes of the system. When a change takes place,

then the new resilience can be computed ab ovo and

compared with its previous values.

Assumption 2 Graphs are static.

Typically, communications networks, either local or

bigger, are designed to maintain a substantial fraction of

total connectivity so that each end point can communicate

with another, even not necessarily directly. Bipartite graphs

capture one limiting case of connectivity: The entire vertex

set V is partitioned to two distinct and non-overlapping

subsets V1 and V2. Vertices belonging to V1 cannot directly

contact each other and instead they have to relay their

communications through at least one of the vertices of V2

and vice versa. In the general case, each vertex can reach

any other in a finite number of edges. This leads to the last

assumption:

Assumption 3 Each graph is a single connected

component.

4.2 Dataset

The training, testing, and validation datasets consist of each

of 40 Kronecker graphs with 6561 vertices, 20 of which

have low resilience and 20 high. In order to prevent any

information leak between the three datasets, different

generator graphs, each with 9 vertices, have been used.

Note, it is possible to find 120 distinct generators, since in

the general case with n available vertices it is possible to

create an exponential number of undirected graphs in total,

specifically:

2

n

2

� �
¼ 2

n n�1ð Þ
2 ¼ 2H n2ð Þ ð7Þ

Recall that Kronecker graphs are generated in two steps:

– A generator graph with Vj j vertices is selected. Its

properties play a crucial role in the formulation of the

properties of the final Kronecker graph.

– Let M 2 0; 1f g Vj j� Vj j be the adjacency matrix of the

generator graph. By repeatedly applying the Kronecker

tensor product to M to itself, in each step results in a

new adjacency matrix of a larger graph. Specifically,

the adjacency matrix in step is:

Mk½ � ¼M
M; k ¼ 0

M�M; k ¼ 1

Mk�1½ � �M; k � 2

8><
>: ð8Þ

The Kronecker tensor product for matrices A 2 Rp�q and

B 2 Ru�v is defined as:

A�B¼M

A 1; 1½ �B A 1; 2½ �B . . . A 1; q½ �B
A 2; 1½ �B A 2; 2½ �B . . . A 2; q½ �B

..

. ..
. . .

. ..
.

A p; 1½ �B A p; 2½ �B . . . A p; q½ �B

2
66664

3
77775 2 Rpu�qv

ð9Þ

Synthetic Kronecker graphs Leskovec [42] have been

shown to have many of the properties of real, large-scale,

graphs such as those encountered in brain connectivity

networks, protein-to-protein interaction networks, trans-

portation and logistics networks, as well as in communi-

cation systems and in the Internet graph. These properties

include:

– The sorted components of the primary eigenvector of

the adjacency matrix follow a power law. This suggests,

in view of the eigenvector centrality, that a considerable

fraction of vertices play a central role in local

communication.

– The sorted eigenvalues of the adjacency matrix follow a

power law. There is one large eigenvalue followed by

one or two large ones and the remaining decay with a

rate which is much slower than that of an exponential

decay. Additionally, some tend to alternate in sign

around zero as do the eigenvalues of real graphs.

– The degree distribution follows a power law. This is a

very important property, as it allows easy graph scaling.

Neural Computing and Applications

123

Moreover, it results in a significant fraction of vertices

with a moderate degree, which facilitates local

communication.

– The number of triangles is close to the observed such

number of real-world, large-scale graphs. Triangles are

instrumental in the local information diffusion in many

scenarios.

A major advantage of synthetic graphs is that they can be

chosen to contain specific patterns which influence resi-

lience. Table 2 summarizes the properties of the graphs

used in the three datasets. The upper half of this table has

the low resilience graphs, whereas the lower half contains

the high-resilience graphs. For each pattern exists two

distinct yet isomorphic graphs which have it, so that TSNs

can discover these patterns independently of row and col-

umn permutations of the adjacency matrix. All patterns

exist in the three datasets. Graphs 1–20 and 61–80 have

been assigned to training dataset, graphs 21–40 and 81–100

to training, and graphs 41–60 and 101–120 to validation.

Notice that the addition or deletion of an arbitrary

number of edges is, according to Seshadhri et al. [65],

tantamount to superimposing a power law graph with an

exponential graph, eventually resulting in a new expo-

nential graph such as those generated by the ERGM and

SUGM model classes Chandrasekhar and Jackson [10].

The latter have considerably different properties than their

power law counterparts and in terms of resilience are quite

fragile as they typically lack the large number of local

paths whose collaboration can compensate for the loss of a

long-distance path Lusher et al. [49]. Thus, we are using

the graphs as generated by each model.

Definition 2 (Tensor sparsity) The sparsity q0 of a tensor

T 2 RI1�I2�...�Ip is defined as the ratio of the number of

zero entries to the total number of entries, namely

q0 ¼
M

PI1
i1¼1 . . .

PIp
ip¼1 Q T i1; . . .; ip

� 	
¼ 0

� 	
Qp

k¼1 Ik
ð10Þ

In Eq. (10) Q P½ � denotes the indicator function for

predicate P, namely it equals 1 if P is true and 0 otherwise.

By separately testing each of the elements of T for

equality with zero and summing the results, the total

number of zero elements follows.

However intuitive it is, Eq. (10) is prone to numerical

errors coming from a number of sources including finite

numerical precision, limitations in floating point opera-

tions, as well as the large number of operands which may

accumulate significant roundoff errors. Therefore, a tensor

entry which should be zero may very well have a very

Table 2 Properties of the

testing, training, and validation

graphs

Indices Low resilience pattern

1–2, 21–22, 41–42 Binary tree

3–4, 23–24, 43–44 Three K3 with 2 connecting edges

5–6, 25–26, 45–46 B2;7 with 10 connecting edges

7–8, 27–28, 47–48 B3;6 with 12 connecting edges

9–10, 29–30, 49–50 B4;5 with 14 connecting edges

11–12, 31–32, 51–52 B4;5 with 16 connecting edges

13–14, 33–34, 53–54 Two K4 connected through a single articulation vertex

15–16, 35–36, 55–56 Non-overlapping C4 and C5 connected with a single edge

17–18, 37–38, 57–58 Two non-overlapping C4 connected through a single articulation vertex

19–20, 39–40, 59–60 K6 with 3 vertices of degree 1

Indices High-resilience pattern

61–62, 81–82, 101–102 Three overlapping C4 with 4 edges between each cycle pair

63–64, 83–84, 103–104 Three overlapping C5 with 6 edges between each cycle pair

65–66, 85–86, 105–106 Two K7 with 12 connecting edges between each cycle

67–68, 87–88, 107–108 K5 and K4 with 8 connecting edges

69–70, 89–90, 109–110 K5 and K4 with 12 connecting edges

71–72, 91–92, 111–112 K9 minus C3

73–74, 93–94, 113–114 K9 minus two K3

75–76, 95–96, 115–116 Three K3 with 8 connecting vertices

77–78, 97–98, 117–118 K9 minus a C4 and a C5

78–80, 99–100, 119–120 K9 minus a C9

Neural Computing and Applications

123

small nonzero value. In order to compensate for this, a

more robust definition for sparsity is required. In this article

the following definition will be used:

Definition 3 (Effective tensor sparsity) The effective

sparsity q s0ð Þ relative to a strictly positive threshold s0 of a
tensor R 2 RI1�I2�...�Ip is the fraction of the total number

of tensor entries whose absolute value equals or is below s0
to the total number of entries, namely

q0 s0ð Þ¼M
PI1

i1¼1 . . .
PIp

ip¼1Q T i1; . . .; ip
� 	

 � s0

� 	
Qp

k¼1 Ik
; s0[0

ð11Þ

The exact computation of Eq. (11) requires O
Qp

k¼1 Ik
� �

operations to compute. Although it is linear in terms of the

tensor size, as in any big data case there is the question

whether something better can be done, specifically whether

the order of magnitude of q s0ð Þ for a given s0 can be safely

estimated. Efficient set cardinality estimators based on

advanced principles exist Drakopoulos et al. [18]. How-

ever, for the purposes of this article q s0ð Þ is computed in

the linear way.

Definition 4 (Frobenius norm) The Frobenius norm of a

real p-th-order tensor denoted by Tk kF of a tensor T 2
RI1�I2�...�Ip is defined as the square root of the sum of its

squared elements:

Tk kF ¼
M

XI1
i1¼1

. . .
XIp
ip¼1

T2 i1; . . .; ip
� 	0

@
1
A

1
2

ð12Þ

As with tensor sparsity, the computation of the Frobe-

nius norm following definition (12) requires linear time

with respect to the total number of elements of the tensor.

4.3 Coherence evaluation

Once the dataset has been formed, the question of how the

true resilience is computed. The answer lies in this case in

computing three reliable and established graph resilience

metrics, namely the Estrada index, the odd Estrada index,

and the clustering coefficient. Each of these metrics treats

graphs differently.

Definition 5 (Estrada index) Let kkf gnk¼1 be the eigen-

values of a graph adjacency matrix M with

k1 [k2 � � � � � kn. Then, the Estrada index Je which

evaluates graph resilience is defined as:

Je ¼M
Xn
k¼1

ekk ¼ ek1 þ ek2 þ � � � þ ekn ð13Þ

Although the Estrada index is defined easily, its com-

putation is not always easy, especially if the spectrum ofM

contains roughly equal in size subsets of very large and

very small values. To avoid numerical instabilities, the

Priest summation algorithm described in Priest [61] has

been used. The intuition behind this algorithm is that

absorption can be avoided by constantly adding numbers of

comparable size. It should be noted that summation of

numbers of various orders of magnitude is a concern in

other computing environments. For instance, in the Julia

scientific computing language the default sum function

works by pairwise summation which combines high

numerical accuracy, especially for standard IEEE preci-

sions, with good performance.

An alternative to a more precise summation algorithm,

which is not used in this article, would be to substitute the

finite sum with a finite integral, provided that appropriate

integration limits x0 and x1 can be found:

Je 	
Z x1

x0

exdx ¼ ex1 � ex0 ð14Þ

The odd Estrada index Jo combines two experimental

observations concerning the original Estrada index, namely

that adjacency matrix eigenvalues alternate in sign around

zero and that only a few of the positive largest such

eigenvalues actually contribute to graph resilience.

Definition 6 (Odd Estrada index) The odd Estrada index

Jo for assessing graph resilience is defined as:

Jo ¼
M
Xm
k¼1

sinh kn ð15Þ

Notice that only m\n eigenvalues are taken into

account in Definition 6, since their exponentials dominate

the sum. Although there is no standard formula for m, a

common selection rule of thumb is:

m ¼ min
ffiffiffi
n

p�
; p

� �
ð16Þ

In Eq. (16) p is the number of strictly positive eigenvalues.

The rationale behind the odd Estrada index is that only

paths of odd length should be considered, since paths of

even length are likely to consist of smaller repeated paths.

For instance, a path of length four can very well have the

form:

vi; vj; vi; vj
� �� �

ð17Þ

Neural Computing and Applications

123

This is equivalent to count twice the contribution of edge

vi; vj
� �

, which has been already accounted for. Clearly,

such paths should not count towards graph resilience. One

way of ensuring that only odd paths are considered is to

apply an odd function to the spectrum of the adjacency

matrix. Hyperbolic sinus is a numerically stable and odd

function, since its Taylor expansion is:

sinh x ¼
X
k

xk

k!
; k
 1ðmod 2Þ ð18Þ

Clustering coefficient is an alternative graph structural

coherence metric which relies on the fact that triangles, the

smallest graph communities, play an instrumental role in

the efficient local information diffusion and in the com-

pensation of communication caused by lost long haul edges

with a path of local edges. Consequently, the more trian-

gles exist, the more coherent a graph is.

Definition 7 (Clustering coefficient) The clustering coef-

ficient Jc is defined as the arithmetic mean of the ratio of

the number of triangles a vertex vk actually is a member of

to the maximum number of triangles vk can participate to.

Jc ¼M
1

Vj j
X
vk2V

M3 k; k½ �
deg vkð Þ

3

� � 	 1

Vj j
X
vk2V

M3 k; k½ �
deg vkð Þ3 ð19Þ

The numerator in (19) is the k-th diagonal element of

M3, where M is the graph adjacency matrix. The approx-

imation formula is derived from the fact that for suffi-

ciently large n and small k it holds that
n

k

� �
	 nk.

Figure 3 shows the sum of the logarithms of the three

resilience scores for each of the 120 graphs of the dataset,

namely:

J ¼ log Je þ log Jo þ log Jc ð20Þ

The logarithms were used in order to use scores compa-

rable in scale. It is clear that the two clusters of low- and

high-resilience graphs are distinguishable.

In order to understand the role of the spectrum of the

adjacency matrix, the spectra of the graph with the lowest

and the highest score J are shown in Fig. 4. From the plot,

it becomes clear that both spectra have a small number of

large positive eigenvalues followed successively by a

large number of medium and low positive eigenvalues, a

very long string of zero or almost zero eigenvalues, and

by a few large negative eigenvalues. This pattern appears

in both spectra and justifies the use of only a few large

eigenvalues in computing both the original and the odd

Estrada indices.

It is worth mentioning that there is a variance between

the two graph categories; however, it is not easily dis-

cernible in Fig. 3. This happens because different graph

patterns lead to different adjacency matrices. The latter in

the general case have different spectra and, hence, different

Estrada and odd Estrada indices. Additionally, different

connectivity patterns lead to distinct clustering coefficients.

The m largest positive eigenvalues as determined by

Eq. (16) for the above graphs are shown in Fig. 5 in log-

arithmic scale. From the plot the difference in the order of

magnitude is evident. Additionally, the eigenvalues appear

to be highly clustered, which holds up to an extent in large,

real world graphs and in the particular case is a result of the

Kronecker product.

0 20 40 60 80 100 120
50

100

150

200

250

300

350

400

Graph index

J
=

lo
g(

J e
) +

 lo
g(

J o
) +

 lo
g(

J c)

Score J vs graph index.

Fig. 3 Score J for the entire dataset

0 1000 2000 3000 4000 5000 6000 7000-200

-100

0

100

200

300

400

Eigenvalue index

E
ig

en
va

lu
e

Full spectrum
low
high

Fig. 4 Spectrum of the adjacency matrices with the lowest and the

highest J score

Neural Computing and Applications

123

4.4 Architectures

Two of the most important parameters of TSNs are the

number of layers and the way the synaptic weights are

initialized. Depending on the error criterion used the TSN,

the synaptic weights may theoretically converge to a single

global minimum in the weight space or such a minimum

may not be guaranteed. In practice, the synaptic weights

may be trapped to a local minimum as a result of the

stochastic nature of initialization process.

In order to keep training complexity and total response

low, two fully connected architectures were tested. The

first has two hidden layers, while the second has one. These

architectures are shown, respectively, in Figs. 6 and 7.

Moreover, the role of each component in its respective

architecture is explained in Tables 3 and 4. An important

feature of both architectures, inherited from the generic

TSN structure, is that input adjacency matrices need not be

vectorized but they maintain their square structure. This

crucially differentiates TSNs from ordinary FFNNs and

other neural network architectures whose input is strictly

one-dimensional vectors. Also, this implies that the TSN

structure is adjusted each time to the dimensions of the

original adjacency matrix.

The primary difference of the architectures is the addi-

tional hidden layer in the first architecture. Otherwise, the

synaptic weights of both architectures are trained exactly in

the same way, notwithstanding the different parameters and

local error gradient matrices, especially those used in the

additional hidden layer of the first architecture. Notice that

the second architecture is rather a special case, as it has

only one hidden layer. This layer makes it similar to an

extreme learning machine (ELM), although the latter has a

single layer populated with a huge number of neurons.

Notice that in Fig. 6 the two hidden layers are shown in

different colours.

Additionally, two synaptic weight initialization pro-

cesses were used for each architecture. The first is based on

a standard Gaussian distribution and the second on a uni-

form distribution on �1;þ1½ �. As mentioned earlier, the

cost function was the negative binary cross-entropy. In

each epoch all the test matrices were projected to the TSN.

Table 5 summarizes the contingency tables for each of

the four cases. Notice that it was created using the test set

Data

W(1)
1

W(1)
2

H(1)
1

H(1)
2

U (1)

W(2)
1

W(2)
2

H(2)
1

H(2)
2

U (2)

Fig. 6 The first TSN architecture

0 20 40 60 80 100101

102

103

Eigenvalue index

E
ig

en
va

lu
e

(lo
g

sc
al

e)
m largest positive eigenvalues (log scale)

low
high

Fig. 5 The m largest positive eigenvalues of the above (log scale)

Data

W(1)
1

W(1)
2

H(1)
1

H(1)
2

U (1)

Fig. 7 The second TSN

architecture

Neural Computing and Applications

123

once training was complete, whereas the validation set was

not utilized in these experiments.

Once the contingency table for each architecture and

each synaptic weight initialization option was formed, the

following evaluation metrics were computed:

• Accuracy (ac).

• Type I error (t1).

• Type II error (t2).

• Precision (pr).

• Recall (rc).

• F1 score (f1).

Table 6 summarizes the above metrics for the four TSN

configurations, the latter being expressed as a combination

of architecture and weight initialization option. From this

table, it can be inferred that two layers are preferable to

only one in terms of accuracy, precision, Type I error, and

F1 score. This can be attributed to the greater flexibility

offered by two hidden layers, which can represent more

nonlinear functions with increased degrees of freedom.

This allows for correctly separating more matrix sets.

Another observation is that initializing the weights

according to a Gaussian seems to yield better results. This

can be explained from the fact that the Gaussian distribu-

tion has the maximum differential entropy among the class

of distributions with the same variance, meaning that its

values cover as much the weight space as possible. Thus, it

is more probable that the initialized weights are closer to

the actual weights minimizing the TSN cost function.

After training is complete, the validation dataset was fed

to each of the four TSNs once and without any synaptic

weight update, preventing thus any information leak from

the dataset to the networks. Validation is a way of inde-

pendently evaluating how well each TSN performs. In this

Table 3 Components of the first

TSN architecture
Component Role

Data Input graph represented as an n� n adjacency matrix

W
1ð Þ
1 Synaptic weights connecting the data layer with H

1ð Þ
1

W
1ð Þ
2 Synaptic weights connecting the data layer with H

1ð Þ
2

H
1ð Þ
1

First neuron stack of the first hidden layer

H
1ð Þ
2

Second neuron stack of the first hidden layer

U 1ð Þ Tensor combining the outputs of the first hidden layer neuron stacks

W
2ð Þ
1 Synaptic weights connecting the first hidden layer with H

2ð Þ
1

W
2ð Þ
2 Synaptic weights connecting the first hidden layer with H

2ð Þ
2

H
2ð Þ
1

Upper neurons of the second hidden layer

H
2ð Þ
2

Upper neurons of the second hidden layer

U 2ð Þ Tensor combining the outputs of the first hidden layer neuron stacks

Table 4 Components of the

second TSN architecture
Component Role

Data Input graph represented as an n� n adjacency matrix

W
1ð Þ
1 Synaptic weights connecting the data layer with H

1ð Þ
1

W
1ð Þ
2 Synaptic weights connecting the data layer with H

1ð Þ
2

H
1ð Þ
1

First neuron stack of the single hidden layer

H
1ð Þ
2

Second neuron stack of the single hidden layer

U 1ð Þ Tensor combining the outputs of the hidden layer neuron stacks

Table 5 Contingency tables for

the four architectures after

training

fa/fo True False fa/so True False sa/fo True False sa/so True False

pos 20 0 pos 20 0 pos 18 2 pos 17 3

neg 19 1 neg 17 3 neg 18 2 neg 16 4

Neural Computing and Applications

123

way, four new contingency tables were formed based on

the results of the validation dataset which are summarized

in Table 7.

Along a similar line of reasoning, the same six metrics

are computed from Table 7 and their values are shown in

Table 8. From the latter it can be seen that the first archi-

tecture/first option configuration and the second architec-

ture/first options achieved the same results, whereas the

other two configurations had minor differences in perfor-

mance, either positive or negative. This is an indication

that TSNs can successfully generalize in unknown datasets,

at least in these datasets which contain familiar connec-

tivity patterns.

As stated earlier, the total wallclock time will also play

the role of an important benchmark, the reason being that

TSNs, once trained, should be considerably quicker than

the computation of the actual resilience metrics. In Table 9

can be seen statistics in seconds regarding TSN training,

testing, and validation, and the computation of the three

resilience metrics. Since the above are executed in GPU,

thus freeing CPU, and no other processes were running at

the time, the wallclock time is a rather accurate approxi-

mation of the total execution time.

The most costly operation for Je and Jo is the compu-

tation of the entire spectrum of the adjacency matrix, even

though only a few eigenvalues play a central role, and for

Jc the cubing of the adjacency matrix. Also, it is observed

that the time for training, testing, and validation is pro-

portional to the TSN size in terms of hidden layers,

whereas the three coherency metrics have constant times,

since they have exact computations with closed-form

summations.

4.5 Sparsification evaluation

Each deep learning model must be parsimonious in order to

be interpretable and understandable. In the case of sparsi-

fication, it is clear that a suitable threshold s0 is the key for

revealing additional zero patterns and assessing tensor

robustness. This raises the question of how such a threshold

is selected. Within the context of TSNs, there are a number

of answers. One approach is to select s0 according to the

order of magnitude of the root mean square value �s defined
as:

�s¼M Tk k2FQp
k¼1 Ik

 !1
2

¼
Yp
k¼1

Ik

 !�1 XI1
i1¼1

. . .
XIp
ip¼1

T2 i1; . . .; ip
� 	0

@
1
A

1
2

ð21Þ

The order of magnitude for each of the four TSNs is shown

in Table 10.

In order to understand how robust are TSNs as classi-

fiers, the effects of sparsifying the trained TSNs will be

evaluated. First, it will be examined the effective sparsity

for various values of the threshold s0:

q0 s0ð Þ � q0
q0

; q0 6¼ 0 ð22Þ

For the first architecture which has two hidden layers, the

average sparsity of synaptic weights for tensors U1 and U2

is taken into account in order to derive a single metric. Of

course, for the second architecture only the tensor U of the

single hidden layer is considered. Figure 8 shows the

sparsity for different threshold values.

By examining Fig. 8, the second architecture has the

quickest growth rate of the relative increase, meaning that

there are many synaptic weights which have low value.

Since each weight that is zeroed out contributes equally,

Table 6 Metrics for the four

TSN configurations after

training

Conf ac t1 t2 pr rc f1

fa/fo 0.9750 0.0000 0.0476 1.0000 0.9524 0.9756

fa/so 0.9250 0.0000 0.1304 1.0000 0.8696 0.9302

sa/fo 0.9000 0.1000 0.1000 0.9000 0.9000 0.9000

sa/so 0.8250 0.1579 0.1905 0.8500 0.8095 0.8293

Table 7 Contingency tables for

the four architectures after

validation

fa/fo True False fa/so True False sa/fo True False sa/so True False

pos 20 0 pos 19 1 pos 18 2 pos 17 3

neg 19 1 neg 17 3 neg 18 2 neg 17 3

Table 8 Metrics for the four TSN configurations after validation

Conf ac t1 t2 pr rc f1

fa/fo 0.9750 0.0000 0.0476 1.0000 0.9524 0.9756

fa/so 0.9000 0.0555 0.1363 0.9500 0.8636 0.9047

sa/fo 0.9000 0.1000 0.1000 0.9000 0.9000 0.9000

sa/so 0.8500 0.1500 0.1505 0.8500 0.8500 0.8500

Neural Computing and Applications

123

the relative increase in sparsity can be seen even for low

threshold values.

Since elements of the tensors are zeroed out, U1k kF þ
U2k kF for the first architecture or U1k kF for the second

architecture should be decreasing as s0 increases. In Fig. 9

the relative decrease in these quantities is shown. For small

values of s0, there is almost no change. However, when s0
reaches 10�2, the sparsification effect starts becoming

discernible. Again, the first architecture appears to be more

robust than the second one.

Finally, the accuracy of each sparsified TSN as a per-

centage of the accuracy of the same architecture is shown

in Fig. 10. Once the final synaptic weights have been

finalized at the end of the training process, the validation

Table 9 Time statistics

(wallclock time, sec)
Train Test Validate Je Jo Jc

fa/fo

Min 213.4517 23.1123 23.1209 42.1259 42.2117 212.9973

Avg 235.6696 24.1426 24.2091 43.1266 43.4609 213.2517

Max 237.6183 25.6602 25.8896 45.3281 46.0031 214.5515

Std 6.3312 1.0953 1.06512 1.0324 1.0901 7.0892

fa/so

Min 212.4517 22.8926 23.5093 42.2891 42.6572 212.6201

Avg 235.5112 23.4915 23.3217 43.6792 43.5542 214.7767

Max 237.3169 24.7991 24.4084 44.8993 45.2316 215.6653

Std 6.2996 1.0032 1.01437 1.1053 1.1188 7.1162

sa/fo

Min 133.5549 13.8085 14.1254 42.1167 42.1992 212.0022

Avg 136.6513 14.3376 15.2281 42.9912 43.3999 213.1189

Max 138.3314 15.7176 15.9896 43.8013 44.1097 214.4477

Std 5.1121 1.1199 1.2121 1.5512 1.1716 7.0999

sa/so

Min 133.0040 13.1688 14.2305 42.2823 42.0001 213.3334

Avg 136.2111 14.5721 15.4523 44.2212 44.0012 214.6672

Max 137.4480 15.6099 16.3331 45.5678 45.6724 215.8816

Std 5.3779 1.1094 1.1444 1.0974 1.0901 7.1222

Table 10 Root mean square

order of magnitude �s
fa/fo fa/so sa/fo sa/so

100:34 100:35 100:34 100:34

10-6 10-5 10-4 10-3 10-2 10-1 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Threshold τ
0
 (log scale)

R
el

at
iv

e
in

cr
ea

se
 o

f
ρ 0

Relative increase of sparsity vs threshold (log scale).
fa/fo
fa/so
sa/fo
sa/so

Fig. 8 Relative increase in sparsity

10-6 10-5 10-4 10-3 10-2 10-1 100
0.75

0.8

0.85

0.9

0.95

1

Threshold τ
0
 (log scale)

R
el

at
iv

e
de

cr
ea

se
 o

f |
|U

|| F

Relative decrease of Frobenius norm vs threshold (log scale).

fa/fo
fa/so
sa/fo
sa/so

Fig. 9 Relative decrease in Frobenius norm

Neural Computing and Applications

123

dataset was used to compute the accuracy. From this figure,

it follows that the first architecture displays considerably

high accuracy which drops only when s0 exceeds 10�2.

Combining the findings of Figs. 8, 9, and 10, it is clear

that the first architecture is a more robust classifier com-

pared to the second. However, even the latter maintains

very high accuracy even at the face of multiple

sparsifications.

5 Conclusions

Structural resilience, namely the ability to maintain its

connectivity at the face of loss of edges or even vertices, is

an important functional specification of current communi-

cation systems, especially for wireless and mobile ones.

Therefore, having a quick and reliable method for evalu-

ating resilience is a valuable tool for researchers and field

engineers alike. This article describes in detail a tensor

stack network (TSN), an emerging deep learning technique

for combining ordinary feedforward neural networks

(FFNNs) into a cluster, training them simultaneously, and

cross-training them up to an extent during distinct phases

of the training process so that each FFNN can learn from

the errors of other such networks. The objective is to make

TSNs efficient and reliable graph resilience classifiers.

Because of the inherently higher-order architecture of

TSNs, they are a natural choice for using graph adjacency

matrices as their basic training element. Four different

configurations, deriving from two architectures and two

policies for synaptic weight initialization, are trained and

tested with two sets of synthetic Kronecker graphs. The

real resilience of the graphs is a function of three estab-

lished metrics, namely the Estrada index, the odd Estrada

index, and the clustering coefficient. Moreover, once the

final set of synaptic weights has been determined, a spar-

sification process was applied in order to determine how

robust TSNs are. Results indicate a very high level of both

classification accuracy and robustness.

Selecting the appropriate architecture for a given non-

trivial problem is more an art than a science and entails

considerable fine-tuning given the huge number of

parameters involved and the interactions between them.

Metrics combining structural and synaptic weight sparsity

constraints should be developed, perhaps using as basis

principles like AIC, BIC, or MDL. Also, the location of

zero weights may reveal interesting patterns. Tensors

arising from the discretization of differential equations of

domain decomposition methods have such distinct patterns.

In communications networks systematic zero locations

may reveal lack of connectivity in some region for a

number of reasons depending on the underlying technology

such as excessive electromagnetic interference or moun-

tains in the case of radio networks, strong underwater

currents in the case of underwater acoustic systems, or lack

of LoS in the case of microwave communications.

Concerning classification, the proposed method can be

compared with TSNs or other deep learning methods for

image classification, since the graph adjacency matrix can

be treated as a bitmap image. Also, this article focused

exclusively on graph structure and did not model any

network function. Structural methods have the advantage

of being function oblivious and, thus, they can be applied

to literally any network. However, the objective of setting

up a network in the first place is to perform a set of

functions. Therefore, a model which takes into account

both structure and functionality would have additional

descriptive power. If functionality can be represented with

structural terms, as it has been shown to be feasible in some

cases in social network analysis, then extending TSNs like

the ones used in this work can yield resilience classifiers.

Acknowledgements The authors acknowledge the support of NVI-

DIA Corporation with the donation of the Titan Xp GPU used for this

research.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of

interest.

References

1. Abadi M (2016a) TensorFlow: learning functions at scale. ACM

SIGPLAN Not. 51(9):1–1

2. Mea A (2016b) TensorFlow: a system for large-scale machine

learning. OSDI 16:265–283

10-6 10-5 10-4 10-3 10-2 10-1 1000.88

0.9

0.92

0.94

0.96

0.98

1

Threshold τ
0
 (log scale)

R
el

at
iv

e
ac

cu
ra

cy
 c

om
pa

re
d

to
 fu

ll
te

ns
or

Accuracy decrease vs threshold (log scale).

fa/fo
fa/so
sa/fo
sa/so

Fig. 10 Accuracy as a percentage of the initial accuracy

Neural Computing and Applications

123

3. Alenazi MJ, Sterbenz JP (2015) Comprehensive comparison and

accuracy of graph metrics in predicting network resilience. In:

DRCN, IEEE, pp 157–164

4. Bengua JA, Phien HN, Tuan HD (2015) Optimal feature

extraction and classification of tensors via matrix product state

decomposition. In: ICBD, IEEE, pp 669–672

5. Benson AR, Gleich DF, Leskovec J (2015) Tensor spectral

clustering for partitioning higher-order network structures. In:

ICDM, SIAM, pp 118–126

6. Bergstra J et al (2011) Theano: Deep learning on GPUs with

Python. In: NIPS BigLearning workshop vol 3, pp 1–48

7. Biguesh M, Gershman AB (2006) Training-based MIMO channel

estimation: a study of estimator tradeoffs and optimal training

signals. IEEE Trans Signal Process 54(3):884–893

8. Bishop CM (1995) Training with noise is equivalent to Tikhonov

regularization. Neural Comput 7(1):108–116

9. Blackmore S (2000) The meme machine. Oxford Universtiy

Press, Oxford

10. Chandrasekhar AG, Jackson MO (2014) Tractable and consistent

random graph models. Technical report, National Bureau of

Economic Research

11. Collobert R, Kavukcuoglu K, Farabet C (2011) torch7: A

MATLAB-like environment for machine learning. In: BigLearn,

NIPS workshop

12. Deng L (2014) A tutorial survey of architectures, algorithms, and

applications for deep learning. APSIPA Trans Signal Inf Process

3:2 3https://doi.org/10.1017/atsip.2013.9

13. Deng L, Yu D (2011) Deep convex net: A scalable architecture

for speech pattern classification. In: Twelfth annual conference of

the International Speech Communication Association

14. Deng L, Hutchinson B, Yu D (2012) Parallel training for deep

stacking networks. In: Thirteenth annual conference of the

International Speech Communication Association

15. Deng L, He X, Gao J (2013) Deep stacking networks for infor-

mation retrieval. In: ICASSP, IEEE

16. Deng L (2013) Recent advances in deep learning for speech

research at Microsoft. In: ICASSP, IEEE

17. Drakopoulos G, Gourgaris P, Kanavos A, Makris C (2016a) A

fuzzy graph framework for initializing k-means. IJAIT

25(6):1–21

18. Drakopoulos G, Kontopoulos S, Makris C (2016) Eventually

consistent cardinality estimation with applications in biodata

mining. In: SAC, ACM

19. Drakopoulos G, Kanavos A, Karydis I, Sioutas S, Vrahatis AG

(2017) Tensor-based semantically-aware topic clustering of

biomedical documents. Computation 5(3):34

20. Drakopoulos G, Kanavos A, Mylonas P, Sioutas S (2017)

Defining and evaluating Twitter influence metrics: a higher order

approach in Neo4j. SNAM 71(1):52

21. Drakopoulos G, Kanavos A, Tsolis D, Mylonas P, Sioutas S

(2017) Towards a framework for tensor ontologies over Neo4j:

representations and operations. In: IISA

22. Drakopoulos G, Liapakis X, Tzimas G, Mylonas P (2018) A

graph resilience metric based on paths: higher order analytics

with GPU. In: ICTAI, IEEE

23. Drakopoulos G, Stathopoulou F, Kanavos A, Paraskevas M,

Tzimas G, Mylonas P, Iliadis L (2019) A genetic algorithm for

spatiosocial tensor clustering: exploiting TensorFlow potential.

Evol Syst

24. Dunlavy DM, Kolda TG, Acar E (2010) Poblano v1. 0: A

MATLAB toolbox for gradient-based optimization

25. Estrada E, Higham DJ (2010) Network properties revealed

through matrix functions. SIAM Rev 52(4):696–714

26. Fisher DH (1987) Knowledge acquisition via incremental con-

ceptual clustering. Mach Learn 2(2):139–172

27. Golub GH, Hansen PC, O’Leary DP (1999) Tikhonov regular-

ization and total least squares. J Matrix Anal Appl 21(1):185–194

28. Goodman DF, Brette R (2009) The brian simulator. Front Neu-

rosci 3(2):192

29. Grubb A, Bagnell JA (2013) Stacked training for overfitting

avoidance in deep networks. In: ICML workshops, p 1

30. Gulli A, Pal S (2017) Deep learning with keras. PACKT Pub-

lishing Ltd, Birmingham

31. Ho TY, Lam PM, Leung CS (2008) Parallelization of cellular

neural networks on GPU. Pattern Recognit 41(8):2684–2692

32. Hutchinson B, Deng L, Yu D (2013) Tensor deep stacking net-

works. TPAMI 35(8):1944–1957

33. Ip WH, Wang D (2011) Resilience and friability of transportation

networks: evaluation, analysis and optimization. IEEE Syst J

5(2):189–198

34. Jang H, Park A, Jung K (2008) Neural network implementation

using CUDA and OpenMP. In: DICTA’08, IEEE, pp 155–161

35. Jia Y (2014) Caffe: convolutional architecture for fast feature

embedding. In: International conference on multimedia. ACM,

pp 675–678

36. Kanavos A, Drakopoulos G, Tsakalidis A (2017) Graph com-

munity discovery algorithms in Neo4j with a regularization-based

evaluation metric. In: WEBIST

37. Kohonen T (1998) The self-organizing map. Neurocomputing

21(1):1–6

38. Kolda T (2009) Tensor decompositions and applications. SIAM

Rev 51(3):455–500

39. Kontopoulos S, Drakopoulos G (2014) A space efficient

scheme for graph representation. In: ICTAI, IEEE

40. Kumar R, Sahni A, Marwah D (2015) Real time big data ana-

lytics dependence on network monitoring solutions using tensor

networks and its decompositions. Netw Complex Syst 5(2)

41. Larsson EG et al (2014) Massive MIMO for next generation

wireless systems. IEEE Commun Mag 52(2):186–195

42. Jea L (2010) Kronecker graphs: an approach to modeling net-

works. JMLR 11:985–1042

43. Li J, Chang H, Yang J (2015) Sparse deep stacking network for

image classification. In: AAAI, pp 3804–3810

44. Li L, Boulware D (2015) High-order tensor decomposition for

large-scale data analysis. In: ICBD, IEEE, pp 665–668

45. Liberti JC, Rappaport TS (1996) A geometrically based model for

line-of-sight multipath radio channels. Veh Technol Conf

2:844–848

46. Lin S et al (2016) ATPC: adaptive transmission power control for

wireless sensor networks. TOSN 12(1):6

47. Loguinov D, Casas J, Wang X (2005) Graph-theoretic analysis of

structured peer-to-peer systems: routing distances and fault resi-

lience. IEEE/ACM TON 13(5):1107–1120

48. Loyka SL (2001) Channel capacity of MIMO architecture using

the exponential correlation matrix. IEEE Commun Lett

5(9):369–371

49. Lusher D, Koskinen J, Robins G (2013) Exponential random

graph models for social networks: theory, methods, and appli-

cations. Cambridge University Press, Cambridge

50. Malewicz G (2010) Pregel: a system for large-scale graph pro-

cessing. In: CIKM, ACM, pp 135–146

51. Matthews DG (2017) GPflow: a Gaussian process library using

tensorflow. JMLR 18(1):1299–1304

52. Xea M (2016) MLlib: machine learning in Apache spark. JMLR

17(1):1235–1241

53. Nageswaran JM (2009) A configurable simulation environment

for the efficient simulation of large-scale spiking neural networks

on graphics processors. Neural Netw 22(5):791–800

54. Najjar W, Gaudiot JL (1990) Network resilience: a measure of

network fault tolerance. ToC 2(1):174–181

Neural Computing and Applications

123

https://doi.org/10.1017/atsip.2013.9

55. Ngo HQ, Larsson EG, Marzetta TL (2013) Energy and spectral

efficiency of very large multiuser MIMO systems. ToC

61(4):1436–1449

56. Oh KS, Jung K (2004) GPU implementation of neural networks.

Pattern Recognit 37(6):1311–1314

57. Palangi H, Ward RK, Deng L (2013) Using deep stacking net-

work to improve structured compressed sensing with multiple

measurement vectors. In: ICASSP, pp 3337–3341

58. Papalexakis EE, Faloutsos C (2015) Fast efficient and scalable

core consistency diagnostic for the PARAFAC decomposition for

big sparse tensors. In: ICASSP, pp 5441–5445

59. Papalexakis EE, Pelechrinis K, Faloutsos C (2014) Spotting

misbehaviors in location-based social networks using tensors. In:

WWW, pp 551–552

60. Pellionisz A, Llinás R (1979) Brain modeling by tensor network

theory and computer simulation. The cerebellum: Distributed

processor for predictive coordination. Neuroscience

4(3):323–348

61. Priest DM (1991) Algorithms for arbitrary precision floating

point arithmetic. In: Tenth symposium on computer arithmetic.

IEEE, pp 132–143

62. Hea R (1992) Neural computation and self-organizing maps: an

introduction. Addison-Wesley Reading, Boston

63. Schmidhuber J (2015) Deep learning in neural networks: an

overview. Neural Netw 61:85–117

64. Seshadhri C, Pinar A, Kolda TG (2011) An in-depth study of

stochastic Kronecker graphs. In: ICDM, SIAM, pp 587–596

65. Seshadhri C, Pinar A, Kolda TG (2013) An in-depth analysis of

stochastic Kronecker graphs. JACM 60(2):13

66. Shi Y, Niranjan U, Anandkumar A, Cecka C (2016) Tensor

contractions with extended BLAS kernels on CPU and GPU. In:

HiPC, IEEE, pp 193–202

67. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence

learning with neural networks. In: NIPS, pp 3104–3112

68. Vasilescu MAO, Terzopoulos D (2002) Multilinear analysis of

image ensembles: Tensorfaces. In: European conference on

computer vision. Springer, pp 447–460

69. Vázquez A, Moreno Y (2003) Resilience to damage of graphs

with degree correlations. Phys Rev E 67(1):15–101

70. Vedaldi A, Lenc K (2015) Matconvnet: Convolutional neural

networks for MATLAB. In: International conference on multi-

media. ACM, pp 689–692

71. Vervliet N, Debals O, De Lathauwer L (2016) TensorLab 3.0—

numerical optimization strategies for large-scale constrained and

coupled matrix-tensor factorization. In: Asilomar conference on

signals, systems and computers. IEEE, pp 1733–1738

72. Wang M et al (2018) Disentangling the modes of variation in

unlabelled data. TPAMI 40(11):2682–2695

73. Wolpert DH (1992) Stacked generalization. Neural Netw

5(2):241–259

74. Wong D, Cox DC (1999) Estimating local mean signal power

level in a Rayleigh fading environment. TVT 48(3):956–959

75. Wongsuphasawat K (2018) Visualizing dataflow graphs of deep

learning models in TensorFlow. Trans Vis Comput Graph

24(1):1–12

76. Yu D, Deng L, Seide F (2013) The deep tensor neural network

with applications to large vocabulary speech recognition. Trans

Audio Speech Language Process 21(2):388–396

77. Zeng R, Wu J, Senhadji L, Shu H (2015) Tensor object classi-

fication via multilinear discriminant analysis network. In:

ICASSP, IEEE, pp 1971–1975

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

	Evaluating graph resilience with tensor stack networks: a Keras implementation
	Abstract
	Introduction
	Previous work
	Tensor stack networks
	Generic architecture and training
	Implementation

	Results
	Overview and assumptions
	Dataset
	Coherence evaluation
	Architectures
	Sparsification evaluation

	Conclusions
	Acknowledgements
	References

