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Abstract The collection of video data for action recognition is very suscepti-
ble to measurement bias; the equipment used, camera angle and environmental
conditions are all factors that majorly affect the distribution of the collected
dataset. Inevitably, training a classifier that can successfully generalize to new
data becomes a very hard problem, since it is impossible to gather general
enough training sets. Recent approaches in the literature attempt to solve
this problem by augmenting a given training set, with synthetic data, so as
to better represent the global distribution of the covariates. However, these
approaches are limited because they essentially involve hand-crafted data syn-
thesizers, which are typically hard to implement and problem specific. In this
work, we propose a different approach to tackling the above issues, which relies
on the combination of two techniques: pose extraction, and domain adapta-
tion as a means to improve the generalization capabilities of classifiers. We
show that adapted skeletal representations can be retrieved automatically in
a semi-supervised setting and these help to generalize classifiers to new forms
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of measurement bias. We empirically validate our approach for generalizing
across different camera angles.

Keywords Action Recognition - Domain Adaptation - Adversarial Neural
Networks

1 Introduction

During the last decades, human activity recognition from video has appeared
as one of the most challenging computer vision tasks [2]. It combines ideas
from the research areas of pattern recognition and machine learning and has
several applications such as surveillance, assisted living, human-machine in-
teraction and affective computing. A categorization of related tasks has been
proposed in [31], dividing them into gesture, action, and group activity recog-
nition and differentiating them based on duration, involved body parts and
number of interacting actors and/or objects. More specifically and according
to the aforementioned categorization, gestures are instant activities, involv-
ing at most a couple of body parts. Actions require a larger amount of time
and may involve more body parts. An interaction is performed between two
“actors” or between an actor and an object. Finally, a group activity may be
some combination of the above. Current open research challenges include the
representation, analysis and recognition of actions [3].

During the early years of the previous decade, training of recognition algo-
rithms was typically based on extracted features from raw activity visual data
[24]. In short, the main drawback of such approaches was an observable drop
in performance for large-scale datasets, i.e., comprised of examples performed
by a large number of actors and for a large number of classes. Moreover,
these early approaches are not robust to viewpoint changes and both these
drawbacks make them insufficient for real-life applications. Although research
towards feature extraction continued for several years, it was not until re-
cently that such limitations have started to be surpassed. The keys to this,
were first the development of low-cost RGB cameras that also extract depth
information, such as the Microsoft Kinect! or the Asus Xtion,? and later the
availability of modern graphics processing units (GPUs), which enabled fast
training of deep neural network architectures [11]. The extra depth modality
has been incorporated to a plethora of research efforts, since it is insensitive
to illumination changes, while it offers an enhanced 3D structural information
regarding a scene. Moreover, the combination of RGB and depth data has
allowed for the extraction and tracking of 3D position of human joints [26].

Recent examples of large-scale action recognition datasets [20,18] have
enabled training of deep architectures with partial success. Notably, several
datasets comprised of raw (RGB) and depth sequences of video data depicting
actions, wherein each example has been recorded by more than one viewpoints

1 https://developer.microsoft.com/en-us/windows/kinect
2 https://www.asus.com/gr/3D-Sensor/Xtion_PRO/
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in an effort to provide some realistic variation to the quality of performed ac-
tions [20]. However, one may criticize such datasets, in the sense that the data
collection process is very susceptible to measurement bias. Factors that may
negatively affect data distribution within a collection process are, among oth-
ers, the equipment used, the camera viewpoint or even the environment (e.g.,
illumination conditions). Therefore, in case of training a model for recogniz-
ing actions (e.g., a classifier), a common problem one may encounter is lack
of generalization to unseen data examples, since the collection of sufficiently
“general” datasets is inarguably an impossible task.

Contemporary approaches typically aim to surpass this problem through
augmentation [29] of the available training data, i.e., by constructing “syn-
thetic” data, in a way that the global distribution of the covariates is better
represented e.g., by adding some kind of noise, translating/rotating the input
data, cropping the scene or by using some domain specific heuristic [5,17]. Of
course, such hand-crafted data synthesizers are typically hard to implement,
while in most cases they are problem-specific or domain-dependent. One could
argue that for any given application, a large corpus of data can be collected ad
hoc in order to perform supervised training. However, the collection process
is time-consuming and expensive, with the main bottleneck being the process
of data annotation. Typically, a realistic use case is to have very few labeled
data in an otherwise unlabeled dataset.

In previous work [21] we presented an approach for the recognition of hu-
man actions targeting at activities of daily living (ADLs) [14]. Skeletal in-
formation was used to create images capturing the motion of joints in 3D
space. These images were then transformed to the spectral domain using well-
known image transforms. A deep Convolutional Neural Network was trained
to classify those images. Skeletal data and pose extraction are a good way
to generalize across measurement biases such as environmental conditions but
are still problematic when changes in viewpoint occur. In [22] we applied a
geometric transform for augmentation of the available data in order to better
generalize across viewpoint changes.

In this work, we propose a different approach for addressing the aforemen-
tioned issues, which is based on adversarial domain adaptation algorithms.
More specifically, we show that adapted representations can be retrieved au-
tomatically to perform inference on a sparsely labeled dataset, using a model
that has been trained on a related labeled dataset. That is, we introduce a
technique for tackling, in the semi-supervised setting, the problem of classify-
ing actions from video obtained with one form of measurement bias using a
model trained on data where a different form of measurement bias is present.
As such, our technique can be utilized to generalize classifiers to new forms
of measurement bias. We perform experiments where we demonstrate that
generalization between different viewpoints can be achieved without data aug-
mentation.

Our approach combines ideas from domain adaptation and action repre-
sentation from video data using skeletal features to provide a novel method
for mitigating covariate shift in the form of measurement biases. In particular,
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different measurement settings are subject to distributional discrepancies that
can prove catastrophic for the generalization ability of classification models.
To the best of our knowledge, our work is the first to consider regularizing
model training using a domain confusion term in the objective for producing
classifiers that are robust to altered measurement environments and subjects
for action recognition from video data. In addition, we apply our proposed
approach to tackle different viewpoint scenarios. This is an application that
is very important in assisted living environments since ensuring similar view-
points for different sites is impossible.

The rest of this paper is as follows: in section 2 we present related work
in the field of human action recognition, focusing on a) publicly available
datasets; b) human recognition tasks; c¢) research works that are based on
image representations of skeletal joints; and d) transfer learning for action
recognition. Then, in section 3 we present the motivation for our approach and
also a brief overview. Next, in section 4, we present the proposed approach
which consists of two steps, i.e., classification and semi-supervised domain
adaptation. Experimental results and technical details are presented in section
5, while conclusions are drawn in section 6, wherein plans for future works are
also presented.

2 Related Work

In this section we present related work focusing in the research areas where
our work lies, i.e., human action recognition from visual data, adversarial do-
main adaptation and transfer learning for action recognition. More specifically,
in subsection 2.1 we present a brief overview of human action recognition
datasets. Then, in subsection 2.2 we define the two main recognition tasks. In
subsection 2.3 we focus on image representations of skeletal joint motion, while
research works regarding transfer learning for action recognition are presented
in subsection 2.4.

2.1 Human Action Recognition Data Sets

Large-scale action recognition datasets can serve as a good starting point for
tackling action classification, especially when coupled with other techniques
such as feature adaptation or data augmentation. The early publicly available
datasets were limited to a small number of simple actions; e.g., the KTH
dataset [24] was limited to 6 actions such as walking, running, hand clapping
and other similar. A few years later, several datasets targeted more complex
actions; e.g., the Hollywood dataset [13] included actions such as answer phone,
get out of car, hand shake and other similar. In less than a decade, more
challenging datasets emerged, comprising of large numbers of more complex
actions and even interactions with objects; e.g., in UCF101 [27] or HMDB
[12], instances of actions such as playing cello, horse riding, swing baseball bat,
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fencing and other similar. Contemporary large-scale multimodal datasets such
as PKU-MMD [18] or the NTU [25], are comprised of large numbers of training
videos and skeletal and depth sequences.

2.2 Human Action Recognition Tasks

According to Wang et al. [31] human action recognition tasks may be divided
into two major categories:

— segmented recognition: the given input video sequence contains only
the action to be recognized. This means that any frame before/after the
action, i.e., not depicting a part of the action, has been removed. In this
case, Recurrent Neural Networks (RNNs) [7] or CNNs [15] are typically
used.

— continuous recognition: the goal is to recognize actions within a given
video; the video may or may not depict a single action. In that case, also
known as “online” recognition, RNNs are typically used.

Note that our approach falls in the first category; we consider video segments
depicting actions limited to those we aim to recognize.

2.3 Image Representations of Skeletal Joint Motion

Typically, when a CNN is used and the only available motion modality are
skeletal data, an intermediate visual representation of skeletal sequences is
required. This representation should capture both spatial and temporal infor-
mation regarding the motion of joints, which can be encoded in its color and/or
texture properties. In this section our goal is to present research works that
are based on visual representations of sequences of 3D skeletal data of human
actions and training deep networks, i.e., an intermediate hand-crafted feature
extraction step is not included in the process. Skeletal data typically consist
of a set of skeletal joints moving in 3D space over time, i.e., for each joint 3
1D signals are generated per action. The extraction of joints from video re-
quires depth information. Several research efforts have been proposed, aiming
to provide 2D pseudo-colored image representations of skeletal motion.

In the work of Du et al. [6], a color image representation of skeleton se-
quences has been proposed. More specifically, they create pseudo-colored im-
ages that have been generated by the x, y and z spatial coordinates of skeletons
and corresponded to the R, G and B components, respectively. Then, they
used them to feed a CNN. In order to preserve the spatial information, the set
of joints is split into five subsets corresponding to arms, legs and the trunk.
For evaluation, they used two publicly available datasets for human actions
and gestures. To preserve temporal information, spatial representations were
chronologically arranged. Moreover, Wang et al. [30] proposed a representa-
tion for preserving the spatio-temporal information of skeletal joint motion,
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namely “joint trajectory maps,” where the spatio-temporal information orig-
inated from 3D skeleton sequences is transformed into three 2D images by
encoding the dynamics of joint trajectories. More specifically, maps are con-
structed by appropriately setting saturation and brightness, so that texture
would ultimately correspond to motion magnitude; each is based on the pro-
jected trajectory of the skeleton to a Cartesian plane. For evaluation, they used
four publicly available datasets for human actions and gestures. Similarly, Hou
et al. [8] transformed the extracted skeleton joints into a representation called
“skeleton optical spectra,” and used CNNs for classification. Their represen-
tation is based on the idea that hue changes should reflect to the temporal
variation of skeletal motion and is composed of four steps: mapping of joint
distribution, spectrum coding of joint trajectories, spectrum coding of body
parts, and joint velocity weighted saturation and brightness. They claimed that
it is possible to use a standard CNN to learn dynamic features from skeletal
sequences, i.e., without having to train a huge number of parameters. They
also maintained that an advantage of their approach is its ability to work using
an insufficient corpus of training examples. They also evaluated their approach
using publicly available gesture, action and interaction recognition datasets.

Li et al. [16] proposed another color texture image representation of 3D
skeletal data called “joint distance maps,” and opted for encoding the pair-
wise joint distances in the 3 orthogonal 2D planes also using a fourth one
to encode distances in the 3D space. Hue was used to encode distance varia-
tions. Each map was separately classified and a late fusion scheme was then
adopted. They asserted that their representation is suitable for both single-
view and cross-view action recognition and evaluated it using human action
and interaction datasets. Liu et al. [19] attempted to compensate for the vari-
ation of the initial position and orientation of the skeleton and for changes
of viewpoint that occur during its motion within an action or changes. First,
they use a transform whose goal is to make the approach view-invariant. Then,
they apply a visualization that creates a series of color images from the trans-
formed skeleton joints. A joint was represented by its 3D space coordinates,
while time and joint label were also added to create a 5D representation. Upon
projection to a 2D image using two of the aforementioned dimensions, the re-
maining three were used as R, G, B values to form pseudo-colored images.
This representation is used to capture the 3D joint spatio-temporal informa-
tion and are followed by image processing and enhancement steps whose goal
is to highlight patterns. For the extraction of discriminative features and they
use CNNs and fuse action class scores. They evaluate their approach using
publicly available action and gesture datasets. In the work of Ke et al. [10] a
novel deep learning framework for 3D action recognition has been proposed.
Contrary to the aforementioned works, Ke et al. did not rely on the extrac-
tion of 3D joint coordinates. Instead, they extracted translation, rotation and
scale invariant features by subsets of joints as in [6]. From each, they extracted
cosine distances and normalized magnitudes from vector representations gen-
erated from pairwise relative positions between joints. These representations
were not treated as time series but were concatenated so as to form a 2D
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representation. Classification is performed by a deep network which is com-
posed by two parts: the first works as a feature extractor, while the second is
responsible for the generation of discriminative and compact representations.
They evaluated their approach using publicly available action and interaction
datasets.

2.4 Transfer Learning for Action Recognition

The notion of transfer learning [23], i.e., of storing knowledge which has been
gained upon the solution of a problem and then of its use in a different, yet
related one, has great potential in aiding the action recognition problem.

Xu et al. [38] propose the use of autoencoders on high-level representations
obtained through semantic transfer. In particular, video data is represented
by action bank features [39]. Action banks for source and target datasets are
then brought to lie in the same space by applying PCA to a fixed number of
components. A latent representation is computed by training the autoencoders
to reconstruct the class centroid over both datasets for each instance in the
source and target domain. Unlike our method, the training procedure requires
labels for the target domain in order to be able to train the target autoencoder.
Moreover, Yusuf and Koniusz [40] propose a CNN architecture on kernel based
feature maps extracted from skeletal data and leverage a supervised domain
adaptation technique to increase the robustness of the learnt classifier. Note
that again, target labels are required and this method cannot be used for
labeling an unlabeled or sparsely labeled dataset. The particular supervised
adaptation technique utilized is the So-HoT algorithm [41] which attempts to
align second order statistics across datasets.

Another interesting work attempts to transfer knowledge for the video ac-
tion recognition task from still images, which are typically more available.
Zhang et al. [42] manipulate feature extracted through kernel PCA to effec-
tively transfer knowledge between heterogeneous domains. The video data is
analyzed into key frames using a shot boundary detection algorithm. The
method benefits from both labeled and unlabeled video data and thus lies
within the frame of semi-supervised learning as does our method. Finally,
similarly to our work, Hachiya et al. [43] tackle homogeneous adaptation for
action recognition in the semi-supervised setting. However, rather than video,
they use accelerometer data and extract a representation based on orientation
invariant statistics. Moreover, while we use a feature learning approach for
adapting classifiers (adversarial discriminative adaptation), in the aforemen-
tioned work, importance sampling based adaptation is utilized.

3 Motivation and Overview

To assess possible applications of the domain adaptation approach towards
the aforementioned goal, consider the following scenario: In an assisted living
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environment one would typically monitor the behaviour and activities of an
actor/user (e.g., an elderly resident) to infer her/his emotional state, or her/his
health. Typically, cameras would be placed in the user’s environment and
the collected data would need to be analyzed using a trained model, e.g., a
classifier. As we have discussed, obtaining such a classifier to work on-the-fly
for any user and for any environment is not a trivial task.

The primary goal of this work is to experimentally prove whether an ad-
versarial domain adaptation approach may be applied in a human activity
recognition for adaptation of samples originating from different viewpoints, so
as to improve the classification accuracy. The secondary goal of our work is to
investigate whether our methodology may still be applied in intense viewpoint
changes. We assume that action instances are available for all viewpoints and
for all classes. Note that our methodology is not limited to the classification
approach adopted. Herein we demonstrate a case with image representations
of 3D skeletal data and classification using Convolutional Neural Networks,
yet other representations and architectures may be also used.

To the best of our knowledge, this is the first work to utilize ideas from
domain adaptation and pose estimation to create robust classifiers that can
generalize across different viewpoints and subjects. Furthermore, we extend an
existing framework for unsupervised domain adaptation through adversarial
networks to the semi-supervised setting, where supervision signal from the
target domain helps guide the underlying distribution alignment process.

Our approach could be deployed in such a real-life setting to alleviate
this issue. A model could be trained on generic action recognition datasets
or on data collected from multiple users. The skeletal information extraction
and adaptation procedures could then be used to improve the generalization
capabilities of the model on data collected from a new user/environment. In
addition, relocating the monitoring equipment for an existing user could hinder
a trained model’s utility. Our method could again readily be applied in such
a scenario to boost performance.

In Fig. 1 we illustrate an overview of the proposed approach. In brief, given
two camera viewpoints (i.e., Left and Right), raw visual data are captured,
while e.g., an actor performs a given action. From the RBG and depth data
captured, skeletal sequences may be extracted. Upon concatenation and inter-
polation of those sequences, a signal image is formed. Using the Discrete Sine
Transformation, an activity image is formed. The collection of captured action
instances form two datasets, namely Dy and D;. The former corresponds to
the source domain, while the latter to the target domain and is further split
to a labelled (D!) and an unlabelled (D¥) subset. Dy is used for training the
source model S, consisting of the source representer M, and the classifier C.
My is the input of the viewpoint adaptation procedure, which is a process
combining domain confusion and supervised training. The former utilizes Dy
and D} while the latter uses D!. The output of the viewpoint adaptation is
the target representer model Mp. Now, when the target camera captures a
raw data sample, following the aforementioned process its activity image is
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Fig. 1 A visual overview of the proposed approach.

adapted using My and the action is recognized by C, fed with the adapted
sample.

4 Methodology

As it has already been discussed, our approach builds on ideas from the ar-
eas of pose extraction and domain adaptation. We now give some technical
details regarding: a) the extraction of skeletal joint information from video;
b) the representation used for capturing spatial and temporal properties of
the aforementioned information during the performance of some activity; c)
the classification approach we follow; and finally, d) the adversarial domain
adaptation we propose.

4.1 Classification

As it has been already mentioned, for human activity recognition tasks human
motion is typically captured by depth cameras, which extract both RGB video
and depth maps per video frame, i.e., an extra video channel where the value
of each pixel is related to the depth of the corresponding object to the image
plane. Our approach utilizes the modality that corresponds to the motion of
joints in 3D space. More specifically, we require as input 3D trajectories of
skeletal joints (i.e., z, y and z coordinates at each frame for each) during an
action.

We work with 3D skeletal data that have been captured with the Microsoft
Kinect v2 sensor. These data consist of 25 human joints per skeleton. The set
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Fig. 2 Extracted human skeleton 3D joints using the Kinect SDK.

of skeletal joints is illustrated in Fig. 2. Up to 6 skeletons can be simultaneously
extracted in real time using the Kinect SDK. Therein, a human skeleton cor-
responds to a graph; nodes correspond to body parts such as arms, legs, head,
neck and so on, while edges follow the body structure. Moreover, a parent-child
relationship is implied. For example, the joint “HEAD” is parent of “NECK,”
while the “NECK” is the parent of “SPINE_SHOULDER,” and so on. Each
joint consists a 3D signal capturing its 3D position over time. Equivalently,
this signal may be seen as 3 1D signals; each corresponding to a coordinate.
Therefore, 75 such 1D signals can be obtained from the set of 25 joints and
for any given video sequence. Note that their duration may vary, since differ-
ent actions may require different amounts of time. Also different subjects may
perform the same action with similar, yet not equal duration. To address the
aforementioned problem of temporal variability between actions and between
users, an interpolation step is necessary. Upon experimenting with several du-
ration values, we ended up setting the duration of all videos to be 159 frames
by performing a linear interpolation step.

The representation used in this work has been partially inspired by the
one of Jiang and Yin [9], who concatenated raw signal measurements collected
by the inertial measurement units of mobile phones and then extracted the
2D Discrete Fourier Transform (DFT) of the concatenated signal. Similarly,
we first create a 2D image by concatenating the aforementioned 75 1D signals
corresponding to the joint motion in 3D space. In what follows, this repre-
sentation will be referred to as “signal” image. Then, from each signal image
we create an “activity” image, by applying the 2D Discrete Sine Transform
(DST).

Note that in previous work [21] we conducted classification experiments us-
ing 2D DFT, 2D Fast Fourier Transform (FFT), 2D Discrete Cosine Transform
(DCT) and 2D DST. The latter was chosen in this work because it showed best
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Fig. 3 (a) A signal image; activity image resulting upon (b) DFT; (¢) FFT; (d) DCT; (e);
DST. Action is playing with phone/tablet. DFT and FFT images have been processed with
log transformation for visualization purposes. Figure best viewed in color.

accuracy in most settings. From the 2D DST we preserve only the magnitude,
i.e. we discard the phase, and also normalize using the orthonorm. Obviously,
the result of this processing is a 2D signal, which we treat as a 2D image. We
herein remind that we do not extract any hand-crafted features at any step
of the proposed methodology. In Fig. 3 we illustrate an example signal image
and the corresponding activity image.

We herein remind that the goal of this work is limited to action classi-
fication. Therefore, it belongs to the category of segmented recognition (see
section 2), since it does not perform a temporal segmentation step. As we shall
see in section 5, we work using pre-segmented video sequences, aiming to only
recognize the performed actions within each segment and under the hypothesis
that each segment contains exactly one action.

The architecture of the proposed CNN is presented in detail in Fig. 10. In
brief, the first convolutional layer filters the 159x 75 input activity image with
32 kernels of size 3x3. The first pooling layer uses “max-pooling” to perform
2x2 sub-sampling. The second convolutional layer filters the 76x34 resulting
image with 64 kernels of size 3x3. A second pooling layer uses “max-pooling”
to perform 2x2 sub-sampling. A third convolutional layer filters the 36x15
resulting image with 128 kernels of size 3x3. A third pooling layer uses “max-
pooling” to perform 2x2 sub-sampling. Then, a flatten layer transforms the
output image of the last pooling to a vector, which is then used as input to a
dense layer using dropout. Finally, a second dense layer produces the output
of the network. To avoid overfitting, the most popular approach which is also
adopted in this work is the use of the dropout regularization technique [28]:
at each training stage several nodes are “dropped out” of the network. This
way overfitting is reduced or even prevented, since complex co-adaptations on
training data are prevented. In addition, we use a validation set to monitor
the validation loss and we utilize the early stopping technique.
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Fig. 4 The proposed CNN architecture.

4.2 Implemented Adversarial Domain Adaptation

Domain adaptation [32] is a technique for automatically decreasing the test
error of a classifier when it is trained on data sampled from a different dis-
tribution than the test set. In this context, the train set is called the source
data and the test set is called the target data. In particular, the underlying
assumption in the domain adaptation setting, is that the distribution of the
covariates in source and target domains is different but the conditional dis-
tribution of the label random variable given the covariate values is the same.
There is a wide range of domain adaptation methods [33], however in this
work we are limited solely to adversarial neural network algorithms [34], [35],
[36], which offer flexibility and are considered state-of-the-art. The main idea
in such algorithms is similar to the idea in Generative Adversarial Networks
[37].

More specifically, the goal of such algorithms is to learn two embeddings
Mg, My for source and target data, respectively, into some latent space L,
such that the distributions of target and source data in £ are the same. We
further require that the representation of data in £ is rich enough to support
classification of source instances. Note that typically no labelled data for the
target domain is available during training, while the source domain data is
annotated.

Latent space distribution alignment is typically achieved through the use
of a domain discriminator network D which is trained to discriminate the
domains in latent space for fixed Mg and M. In turn, gradients from the
discriminator are reversed and used to update the parameters of My, keeping
D fixed. This process is repeated until an equilibrium is reached. Under mild
assumptions on the capacity of the involved networks, it can be shown that at
equilibrium, the distributions of source and target latent representations are
aligned (similar to [37], [35]). A visual illustration of the herein adopted domain
adaptation approach is provided in Fig. 5. Note that in some approaches, a
target and a source model are trained concurrently while in other approaches
the source model is trained in a separate phase before the adaptation procedure
and its parameters are kept fixed while the target model is being trained.
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Fig. 5 Visual illustration of the effects of domain adaptation. On top the adapted model
is equal to the trained model. Because source and target data have different distributions,
the resulting distributions in latent space are different and the domain discriminator can
be trained to classify instances in latent space. After the adaptation procedure is finished,
the adapted model has been trained so that the distribution of its output, when its input
is distributed as the test data, is equal to the source data distribution in latent space. The
domain discriminator can no longer discriminate the domains.

Our method is inspired from Adversarial Discriminative Domain Adap-
tation (ADDA) [35]. In particular, we adapt ADDA to the semi-supervised
setting, i.e., we assume that a small part of the target domain is labelled and,
for the rest of it, the labels are unknown. This assumption is in line with a lot
of problems that need to be resolved in practice. As discussed earlier, annotat-
ing a dataset is the main bottleneck in constructing training sets but labeling
a small portion of a given dataset is considered feasible. Our aim is to boost
the generalization capabilities of a source data classifier given a large corpus of
sparsely labeled data from the target domain. Our method is complementary
to source classification; We build on top of a source classifier obtained through
any supervised learning approach on the source data.

The target domain labeled data provide supplementary information to the
model during training and in general lead to better models compared to un-
supervised adaptation. The classifier C', remains fixed with pre-computed pa-
rameters (e.g. obtained through standard supervised learning on the source
domain), while the target representer M, is trained.
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In contrast to ADDA, the loss function used to train the target representer
network Ly, is given by

Lat, = —EBaynx, [l0g(D(Mi(21)))] = Az, g~ x7 log(C(Mi(z0)))] (1)

where the second expectation is replaced with the empirical average over the
labeled subset of the target domain. In (1), A is a trade-off parameter; for
A = 0 we get the typical ADDA loss, while for A — oo we obtain a typical
supervised optimization task. Note that a very small portion of the target data
set is labeled and as such simple supervised learning is not a robust approach
to tackle the classification problem. In practice, A is selected according to
some empirical validation technique. The aforementioned domain adaptation
methodology is presented as pseudocode in Algorithm 1.

The described method was used to generalize a source model across view-
point changes. In addition, we attempted to generalize a model across different
subjects. In particular, video data featuring 10 subjects were selected from the
PKU dataset and 10 different source-target data pairs were tested. For each
test, the actions performed by one subject served as a target set and the rest of
the actions (i.e. by the other subjects) as a source set. However, we found that
source and target errors were similar without any adaptation indicating that
no covariate shift is present in the cross subject setting. This indicates that
covariate shift due to different subjects has been effectively mitigated through
the use of skeletal data and interpolation.

We should herein note that the domain adaptation step introduces a signif-
icant overhead in any classification methodology, since it is a time consuming
task. However, it consists an offline step, therefore, it may still be used in
real-life applications, since it does not have any effect in a given deep neural
network architecture in terms of complexity.

5 Experiments
5.1 Dataset

The experimental evaluation of the proposed approach has been performed
using part of the well-known PKU-MMD data set [18]. As it has already been
mentioned, PKU-MMD comprises a large-scale benchmark focusing on human
action understanding as well as on multi-modal action analysis. It consists of
approximately 21.5K action instances from 51 action categories. The afore-
mentioned instances span into approximately 5.4M video frames. Each video
may contain several actions and lasts about 3-4 min. Indicative actions of
PKU-MMD include drinking, waving hand, putting on the glasses and so on.
Moreover, 10 interactions are included, such as hugging, shaking hands and so
on.

The dataset has been recorded with 66 human subjects participating in
the data collection process. Each subject is part of 4 action and 2 interaction
videos. Each action has been recorded by 3 camera angles (tagged left (L),
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Algorithm 1: Semi-Supervised Discriminative Domain Adaptation

Input: A source dataset Dg, a target dataset D separated into a labeled subset
Dgf) and an unlabelled subset Dgﬂu), a source representer Mg, a source classifier
C, a hyperparameter vector X.

Output: A target model C(Mrp)(-).

INITIALIZE():

My < Mg; D <« random_initialization();

C freeze();

TRAIN():

for X(MAXITER) do
My freeze(); D.unfreeze();

for X(D_iter_per_cycle) do
D.train_on_batch([0.5X(batch_size)], Dg);
D.train_on_batch(|0.5X(batch_size) |, DY);

end

D freeze(); Mr.unfreeze();

D o My .get_batch_gradients(X(batch_size), D;u) );
C o My .get_batch_gradients(X(batch_size), Dg) );
My .update_weights(X(A));

end
return: C' o M.

Capture Area

45° 450

Camera #1 Camera #3

Camera #2

Fig. 6 Camera setup of the PKU-MMD dataset. Cameras #1, #2, #3 correspond to L,
M, R, respectively.

right (R) and middle (M)) using the Microsoft Kinect v2 camera. The camera
setup is illustrated in Fig. 6. Moreover, in Fig. 7, we illustrate a skeleton as
seen by the three cameras. For each action example, raw RGB video sequences,
depth sequences, infrared radiation sequences and extracted 3D positions of
skeletons are the modalities provided.

Note that as it has already been mentioned, our main focus was to assess
whether the proposed approach may be used for real-life ambient assisted living
scenarios and more specifically for the recognition of ADLs, instead of a more
generic set of daily activities. In such scenarios, it is of major importance
to accurately detect a few activities closely linked to the subject’s quality
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Fig. 7 A skeleton as seen by cameras #1 (L), #2 (M), #3 (R), from left to right, respec-
tively. For illustrative purposes, depth information, i.e., z-coordinate has been discarded.

of life. Therefore, as in our previous work [21] we selected 11 out of the 51
classes of PKU-MMD, which we believe are the closest to ADLs or events in
such a scenario. The selected classes are: eat meal snack, falling, handshaking,
hugging other person, make a phone call answer phone, playing with phone
tablet, reading, sitting down, standing up, typing on a keyboard and wear jacket.
In Fig. 8 we illustrate sample signal and activity images from these 11 classes.

5.2 Part I: classification

The evaluation protocol we followed is as follows: we first performed experi-
ments per camera position; in this case both training and testing sets are de-
rived from the same viewpoint. Then, we performed cross-view experiments,
where different viewpoints were used for training and testing. The goal of these
experiments was to test the robustness of the proposed approach in terms of
transformation (e.g., a translation and a rotation), which could correspond to
abrupt viewpoint changes which typically occur in real-life situations. Finally,
we performed cross-subject experiments, where subjects were split in training
and testing groups, i.e., any actor “participated” only into one of the groups.
As in previous work we found that our representation of skeletal motion suf-
fices for cross-subject shift mitigation. The goal of this part of evaluation was
to test the robustness of our approach into intra-class variations. In real-life
situations this is expected to happen when a system is trained e.g., within
a laboratory environment and is deployed into a real ambient-assistive living
environment. Note that in all cases we measured classification accuracy. De-
tailed results are listed in Table 1 under source model (“S”) for ADL action
recognition with cross-view shift.

5.3 Part II: domain adaptation

For each experiment, we select one of the camera angles as source data and one
as target data. We test the combinations L — R, L — M, R — M, where X —
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Fig. 8 Examples of activity images from 11 classes and for the 4 transforms used. 1st
row: DFT; 2nd row: FFT; 3rd row: DCT; 4th row: DST. a) eat meal/snack; b) falling; c)
handshaking; d) hugging other person; e) make a phone call/answer phone; f) playing with
phone/tablet; g) reading; h) sitting down; i) standing up; j) typing on a keyboard; k) wear
jacket. DFT and FFT images have been processed with log transformation for visualization
purposes. Figure best viewed in color.

Y is typical notation in the domain adaptation literature denoting adaptation
between source X and target Y. In addition, since we are considering the
semi-supervised setting, a small subset is sampled without replacement from
the target data to serve as the labeled target instances. This subset is utilized
during training both for providing a supervision signal and for unsupervised
adversarial training, but it is excluded when calculating validation scores.

For each combination of source and target domains, we vary the percent-
age of the target data set that is labeled between 0%,5% and 10%. In all
experiments we utilize a source model (.5), which is trained in a standard su-
pervised way on the source domain. For our method, we setup the standard
adversarial network setting for domain adaptation using S and we modify the
training procedure to include supervised information as in subsection 4.2. The
trade-off parameter A in (1) was set to 1 for all experiments. This resulted
upon initial trial and error experiments to determine an appropriate interval.
Upon this determination, grid search was performed. We additionally, train a
model on the labeled subset of the target domain to serve as a benchmark.
In particular, this is done for initial weights taken both randomly and from S
yielding models T}4,q and T, respectively.
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Table 1 Domain adaptation experimental results. Figures represent average accuracy per-
centages over ten runs. In each setup significant improvements are indicated with bold. Last
column corresponds to the difference between S and DA.

S Tws | Trand | DA diff.

0 | 41.28 - - 49.94 | +20.98%
L—R [ 5 | 4128 | 70.43 | 61.24 | 77.87 | +88.64%
10 | 41.28 | 74.56 | 70.58 | 81.52 | +97.48%
0 | 84.49 - - 8421 | -0.33%

L—M [ 5 | 84.49 | 86.00 | 72.56 | 88.65 | +4.92%
10 | 84.49 | 91.61 | 76.90 | 92.08 | +8.92%
0 | 84.82 - - 84.90 | +0.09%
R—M [ 5 | 84.82 | 86.17 | 7023 | 88.32 | +4.13%
10 | 84.82 | 90.54 | 76.83 | 91.47 | +7.84%
0 | 44.20 - - 53.41 | +20.84%
R—L [ 5 | 4420 | 76.36 | 64.77 | 79.90 | +80.77%
10 | 44.20 | 80.56 | 77.15 | 86.78 | +96.54%
0 | 82.68 - - 82.99 | +0.37%
M —L [ 5 | 82.68 | 86.48 | 6837 | 86.78 | +4.06%
10 | 82.68 | 90.14 | 79.36 | 91.12 | +10.21%
0 | 77.76 - - 82.66 | 16.30%
M—R [ 5 | 7776 | 84.95 | 69.71 | 85.90 | +10.47%
10 | 77.76 | 90.01 | 75.83 | 91.14 | +17.21%

Table 2 Classification report for the source model on target data.

L—-R|L—-M |  R—->M | R—-L | M—L | M—R
Precision 41.45 81.43 83.56 44.90 81.39 78.91
Recall 42.31 88.93 87.70 44.67 86.07 79.07
F1 41.87 85.01 85.57 44.78 83.66 78.99

Table 3 Classification report for our method with no labelled target data.

L—-R|L—+M | R—-M)|R—-L | M—-L|M—=R
Precision 50.36 80.13 86.28 54.74 80.21 79.96
Recall 52.11 81.22 86.40 50.06 81.37 83.17
F1 51.22 80.67 86.34 52.29 80.78 79.47

Table 4 Classification report for our method with 5% labelled target data.

L—-R|L—-M | R-M | R—-L | M-—L | M—R
Precision 75.44 82.83 82.12 84.74 83.69 82.66
Recall 77.93 89.77 90.39 75.06 86.08 83.83
F1 76.66 86.16 86.06 79.61 84.87 83.24

Our results are summarized in tables 1-5. More specifically, in Table 1 we
present the accuracy in all 6 transfer scenarios and for the cases of the source
model on target data and for the three cases of the proposed method, i.e.,
without any labelled target data and with 5% and 10% labelled target data.
As it may be observed, the improvement is significant in the more demanding
transfer scenarios, i.e., L -+ R and R — L, where increase ranges between 21%
and 98% and is improving as the percentage of labelled target data increases. In
most other less demanding transfer scenarios, i.e., those involving M and one of
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Table 5 Classification report for our method with 10% labelled target data.

L—-R|L—->M | R R—->M | R—-L | M—L | M—R
Precision 77.61 86.24 88.49, 88.19 95.12 94.47
Recall 79.69 90.07 86.98 87.16 93.58 89.22
F1 78.64 88.11 87.71 87.67 94.38 91.77

Before Transfer After Transfer

Fig. 9 Confusion matrix Right — Middle. Illustration of the confusion matrix for our
classifier before and after transfer.

the other camera setups, the increase of accuracy ranges between 4% and 17%
with 5% and 10% labelled target data, respectively. In three of the remaining
scenarios, i.e., with no labelled target data, accuracy remains practically the
same. Notably, in one case (M — R), accuracy is increased by 6% even without
any labelled training data. In tables 2-5 we present Precision, Recall and F1-
scores for the aforementioned cases and for all scenarios. Similar observations
may be made also for these metrics.

Moreover we provide, indicatively, color-coded visual representations of the
confusion matrices before and after applying our method. These are shown in
Figures 9 and 10. For brevity, we only included these for two transfer scenarios
(L — R, R — M), which are representative of the other scenarios. Similar
observations occur for R —+ Land M — R, M — L and L — M. It is apparent
that our method greatly benefits the learnt classifier especially on domains
that are less related (e.g. L — R as opposed to R — M). Even with very
few labelled target data, the model’s performance is boosted significantly and
overfitting is avoided due to the regularization that is introduced by the signal
coming from the source domain through the adversarial training procedure.

5.4 Implementation Details

The experiments were performed on a personal workstation with an IntelTi7
5820K 12 core processor on 3.30 GHz and 16GB RAM, using NVIDIA™ Geforce
GTX 2060 GPU with 8 GB RAM and Ubuntu 18.04 (64 bit). The deep CNN
architecture has been implemented in Python, using Keras 2.2.4 [4] with the
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Before Transfer After Transfer

Fig. 10 Confusion matrix Right — Left. Illustration of the confusion matrix for our classifier
before and after transfer.

Tensorflow 1.12 [1] backend. All data pre-processing and processing steps have
been implemented in Python 3.6 using NumPy3, SciPy* and OpenCV.?

6 Discussion and Conclusions

Our motivation for this work was to address the problem of generalizing clas-
sifiers for human action recognition to new forms of measurement bias. In
particular, in real life applications obtaining annotated training samples from
the measurement setup of interest may be unrealistic, since the annotation
process is slow and expensive. As such we can only assume that a few la-
beled instances are available from our particular setup. In addition, different
measurement biases make it hard for a classifier trained on a generic action
recognition dataset to generalize well. For the aforementioned reasons we pro-
pose the use of domain adaptation algorithms in the semi-supervised setting
as an effective approach to labelling a sparsely labeled test dataset, in the
presence of covariate shift.

In our methodology, we extend previous work for classifying human ac-
tions in videos to a setting where training and test datasets are subject to
different measurement biases. In particular, we leverage a novel representation
of 3D skeletal motion which relies on spectral images obtained through DST
and adversarial domain adaptation algorithms for automatically adapting the
representation learnt by a deep neural network to a new form of measure-
ment bias. We demonstrated the effectiveness of our proposed methodology
on cross-subject and cross-view datasets shifts. We found that our skeletal
data representation effectively tackles the cross-subject shift, while domain
adaptation allows us to effectively tackle the cross-view shift.

3 http://www.numpy.org/
4 https://www.scipy.org/
5 https://opencv.org/
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We evaluated the proposed approach using a popular action recognition
dataset as a source, which consists of skeletal sequences which have been cap-
tured by 3 Kinect v2 cameras, under different camera angles. The skeletal joints
of the human actors involved had been extracted. We performed experiments
involving either a single camera (single-view) or more than one (cross-view).
We also performed cross-subject experiments to evaluate the robustness of the
approach. We mainly focused on a subset of 11 actions which in our opinion are
the most close to real-life ADLs. Our initial results indicate that the proposed
approach may be successfully applied to human action recognition in real-like
conditions, yet a drop of performance is expected when significant changes of
viewpoint occur.

We experimented using four different setups. In the first we only performed
classification using our novel skeletal motion representation and no adaptation.
We empirically found that cross-subject shifts are effectively handled by this
method since our target domain accuracy was the same as our test accuracy.
In the other three setups we varied the percentage of labelled examples in the
target domain to 0, 5 and 10 which consisted of data subject to cross-view
shifts. The adaptation procedure provides a clear improvement in all three
settings.

In particular, we experimented with a novel transfer scenario where we aim
to improve classifier generalization capabilities across different viewpoints. Our
method may be generally seen as a regularization technique which improves
performance by incorporating knowledge learnt from another domain. It is
evident that introducing a domain confusion term in the objective function
leads to better generalizing classifiers when target labelled data are scarce.
Our procedure is inspired by existing techniques (namely discriminative do-
main adaptation), which have been successfully used in unsupervised domain
adaptation applications. The principle behind our methodology is to align co-
variate distributions in source and target domains using a target supervision
signal to help avoid poor local minima. Our procedure allows us to build high
utility systems in many applications, such as monitoring ADLs, by introducing
an offline overhead in computation.

Among our plans for future are the following: a) investigation on methods
for creating the signal image, possibly with the use of other types of sensor
measurements such as wearable accelerometers, gyroscopes and so on; b) in-
vestigation on image processing methods for transforming the signal image to
the activity image; c) exploitation of other types of visual modalities in the
process, such as RGB and depth data; d) evaluation of the proposed approach
on several other public datasets; e) application into a real-like or even real-life
assistive living environment; and f) extend our approach to open set domain
adaptation for applications where the target dataset contains previously un-
seen (in the source domain) classes.
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