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Abstract— Melanoma is a serious form of skin cancer that 

begins in cells known as melanocytes. While it is less common 

than basal cell carcinoma (BCC) and squamous cell carcinoma 

(SCC), melanoma is more dangerous because of its ability to 

spread to other organs more rapidly if it is not treated at an 

early stage. The basic examination for melanoma is dermoscopy, 

an image modality of the skin part that is affected. In this work, 

we propose a new deep learning approach, based on 

convolutional neural networks, to classify dermoscopic images 

in one out of 32 categories. An existing dataset, containing 2013 

images from different categories of melanoma [10] has been 

used for the training and validation of our approach. 
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I. INTRODUCTION 

Skin cancer is one of the most common cancers. 

Melanoma is a form of cancer in the body that develops from 

melanocytes. It can occur anywhere on the body that contains 

melanocytes, even in the eyes. It is a dangerous form of 

cancer if we do not detect it and treat it in early stages.  

Diagnosis of melanoma is difficult and many times the 

dermatologist cannot make the appropriate decision for the 

patient. Machine learning [44] can assist dermatologists in 

the early diagnosis of melanoma by applying artificial 

intelligence algorithms. A unique category of machine 

learning, Deep learning, is often used to process and evaluate 

an image [24]. Deep learning uses multiple levels to extract 

higher-level features from raw input. Deep learning 

algorithms have greatly improved the evolution image based 

diagnosis. 

Many algorithms and methods have been proposed in the 

past, using convolutional neural networks for classifying 

images to detect skin cancers [5-6,10-11,19-20], machine 

learning algorithms to classify and evaluate [7,9] and  creating 

their own algorithms [4]. In most cases, dermoscopic images 

were used as input data. 

In this paper, a convolutional neural network is used for the 

classification of melanoma images in different categories. 

 
Figure 1 Different Types of Melanoma 

II. RELATED WORK 

Kawahara et al [6,10] proposed convolutional neural 

networks for analysing clinical dermoscopic images[6] and 

for the classification of melanoma images [10] helping in skin 

cancer diagnosis. The convolutional neural network uses 

different types of images, for the diagnosis of melanoma.  

Yuan et al [5] proposed an automated injury detection 

system with convolutional neural networks used as 

methodology for classifying dermoscopic images of injuries.  

Guarracino et al [4] proposed his own algorithm for 

segmentation. His methodology was for classifying images 

with melanoma and using them in his own algorithm.  

Farhan Riaz et.al [7] proposed a new diagnostic system for 

melanoma detection with dermatological images and a new 

methodology for the separation and classification of images 

to detect melanoma. 



 

Figure 2 Charts for model accuracy(Up) and for loss(Down) 

Mahmouei et al [9] proposed a color-based melanoma 

detection system (Quad Tree). The methodology was based 

on the pre-processing of images, separating melanoma and 

non melanoma images, constructing five coating molecules, 

palette colors, Quad Tree collection and pallets. 

III.  METHODOLOGY 

A. Dataset 

The dataset of our method is from Kawahara et.al [10] that 
contains 2013 melanoma images divided into 34 categories.  

B. Libraries and Applications 

For the development of the convolutional neural network, 

we used python programming language and the following 

libraries: 

 

• Tensorflow [1,22,33] 

• Keras [2,21,34] 

• Numpy [18] 

• Sklearn [17] 

• Matplotbib [39] 

 

 Cloud applications, such as google drive, were used in order 

to apply the convolutional neural networks, where the data 

were stored, google colab [3] where the convolutional was 

trained and evaluated.  

TABLE I COMPARISON OF RESULTS 

 

C. Convolutional Architecture 

For our methodology, we created a simple convolutional 
neural network Fig.3. Our convolutional network was a 3-
level network where each level consists of: 

1. The 2d dimension convolutional layer together 
with the relu activation function [37] 

2. The max-pooling layer that is a 2d table 

3. The dropout layer to avoid overfitting 

In each execution, the convolutional layer must be reduced 

to half size. The above layers are playing important part in 

the processing of images but also in the part of the model 

training.  

For the training process, we created the flatten layer to 

connect the previous layers with the fully connected layer 

(dense layer) where the training takes place.  

Author Algorithm Dataset Accuracy Sensitivity 

Guarracino 

et.al[4] 
SDI+ ISCI 2017 88.8% 81.3% 

Yuan 

et.al[5] 
CNN 

ISBI 

2017 
(2000) 

93.4% 82.5% 

Kawahara 
et.al[6] 

CNN 
ISIC-ISBI 

(2000) 
98.0% 54.2% 

Riaz 

et.al[7] 

SVM & 

KNN 

PH2 

(200) 
ISIC 

(10000) 
 

 

82.25% 
80.6% 

(SVM) 

74% 
79.7% 

(KNN) 
 

 

 
 

- 

Mahmouei 

et.al[9] 
Quad Tree (825)  

 

- 80.5% 

Kawahara 

et.al[10] 
CNN (1011) 

 

80.8% 64.9% 

Li et.al[11] CNN 

ISBI 2016 

(1279) 
ISBI 2017 

(1100) 

95.9% 
93.9% 

 

 
- 

Brinker et 
al 

[19] 

CNN (12.378) - 
 

92.8% 

 

Brinker et 
al 

[20] 

CNN 
 

(4204) 

 

 
- 

 
82.3% 

 

This work CNN 
(2013) 

 

 
90% 

 

 
87% 

 

Figure 3 Convolutional Neural Network 



 

 

In each layer there is the corresponding dropout layer that 

increases the training of the model and reduces the execution 

speed. 

D.   Training 

Our model uses adam [23] as an optimizer and accuracy as 

metric. In this case, accuracy indicates the effectiveness of the 

model in training and evaluation and shows how accurate the 

methodology is.  

IV. RESULTS 

Training was performed in 70 epochs, each one containing 

45 batches of images. Fig.2. shows the effectiveness of the 

model in the given data. The executions of model training in 

google colab required 15 minutes reporting a validation 

accuracy of 88-97%.  

 For the evaluation we used a part of the dataset, 32 random 

melanoma images from different categories, as shown in 

Fig.4. 

Based on the predictions of the CNN model and the real 

annotation, a 32X32 confusion matrix is formulated and the 

following metrics were extracted: 

• Accuracy = (TP+TN)/(TP+TN+FN+FP)            (1)  

• Precision(Pre) = TP/(TP+FP)                               (2)          

• Recall(Rec) or Sensitivity = TP/(TP+FN)            (3)                                               

• F1-score = (2*Pre*Rec)/(Pre*Rec)                     (4)  

 
 TABLE II EXECUTION SAMPLES          

 

 

In our analysis we performed 100 executions. The 
performance of our model and comparison of results are 
summarized in Table I. Metrics for some of the steps are 
shown in Table II. 

V. DISCUSSION 

The proposed model is reliable in terms of accuracy in the 

diagnosis of melanoma and provides comparative 

performance with similar work, as shown in Table I. Future 

work will focus on the implementation of experiments on 

better hardware with more powerful GPU in order to decrease 

the time needed. For better performance a combination of 

convolutional networks could also be performed and 

experimentation could be done with more data. 
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