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Abstract: We present underpinning neural structures to represent various components of emotional
dispositions. After a description of simple models of the dynamics, an even simpler multi-layer perceptron
model is presented with three outputs. This leads to a high level of success in recognition of emotional
dispositions from a database of faces, as well as an interpretation in terms of the underlying neural system. By
extending the discrete classification approach to continuous variables in a three-dimensional state-space the
recognition performance can be improved and the causes for classification errors can be studied.
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1 Introduction
Recent developments in the analysis of emotions
have side-stepped the old and unresolved problem of
delineating primary from secondary or higher
emotions by turning to the social uses to which the
emotions are put. These are in terms of the
dispositions for action that the emotions arouse. For
example the emotional epithet ‘exasperated’ would
lead, with high probability,  to withdrawal from
ongoing actions and with a lower probability to
destructive actions. This is the approach of ‘social
constructivism’ [1]. One of its effects is to shift the
priorities of brain-based theories of emotions.
Modelling the conscious experience associated with
emotions is a thorny problem, and it remains so.
However, social constructivism suggests that
modelling dispositions is an equally important part
of the task, and it is much more tractable.
In this paper we explore the possiblity of developing
a neurally-based theory of emotional dispositions.
We consider the main neural substructures in the
brain which lead to dispositions to act from an
emotional origin, and from that construct a simple
neural model for emotional dispositions. The model
can be trained using a data-base of realistic emotion-
based dispositions arising from facial or speech
images.
  The crucial circuits involved with emotionally-
based dispositions to act are those at the basis of
motivation. This is known to be the limbic circuitry,
involving the hippocampus and amygdala as well as
the dopamine sources of motivation (ventral
tegmental area or VTA) and the output ‘gate’ from
the limbic system composed of the nucleus
accumbens. There are also crucial contributions

from prefrontal sites as well as posterior cortical
regions. It is this system of nuclei that will be
modelled by simple neural modules to attempt to
explore the neural basis of emotional dispositions in
the brain.
  In more detail, the basic nuclei in the brain
involved in the production of emotional dispositions
are:

 the hypothalamus (HYP): to control autonomic
and endocrine responses, and to gate inputs in
terms of the internal state of the system;

 the amygdala (AMYG): to learn the salience of
inputs, both positive and negative;

 the ventral tegmental area (VTA): to produce
dopamine as a signal of a rewarding input;

 the prefrontal cortex (PFC): to encode novel
inputs, and excite the VTA to broadcast relevant
reward;

 the hippocampus (HC) to gate inputs from the
amygdala as to the salience of an input, in terms
of memory of past encounter;

 the nucleus accumbens (NACC): the outlflow of
motivation, from the limbic circuitry (amygdala,
hippocampus) to action orchestrated by the basal
ganglia and brainstem motor centres.

 the anterior cingulate (ACG): as an overall
executive controller of actions being taken.

There are numerous other sites also concerned with
production of emotional dispositions, but the above
are the basic circuits [2,3]. The overall connectivity
of these sites (excluding the anterior cingulate) is
indicated in figure 1.
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Figure 1. The connectivity between the main sites
involved with the creation of dispositional states in
the brain. PFC = prefrontal cortex; HC =
hippocampus; NACC = nucleus accumbens; AMYG
= amygdala; VTA = ventral tegmental area; VP =
ventral pallidum; HYP = hypothalamus. The dashed
lines in the figure denote dopamine modulation from
the VTA used in control and learning of synapses at
the projection sites.

The accompanying paper [4] indicates that a set of
primitive emotion words (amused, angry, afraid,
affectionate, bored, confident, content, disappointed,
excited, happy, interested, loving, pleased, relaxed,
sad, worried) is obtained from studying a group of
subjects, who can rate these words on a two-
dimensional activation-evaluation plane for a
continuous range of levels. We add to these two
dimensions the third one of action (action is
described as positive if it is directed towards the
object of emotion). This third dimension allows
separation of emotion descriptors, such as fear and
anger, poorly separated in the activation-evaluation
plane (see figures 3 and 4 of Cowie et al, 1999 [4]).
Thus we wish to understand how the neural system
of figure 1 can produce activations along three
different dimensions which can be recognised as
activation, action and evaluation.

1.1  Outlook
  Having described the known neural circuitry in the
brain, and the problem we need it to solve of giving
outputs recognisable in three dimensions, we
propose in the next section an identification process
for the outputs of the system of figure 1. Following
that in section 3 we give a neural implementation of
the architecture of figure 1. This is then trained to
give the three-dimensional dispositional state
outputs for the faces of a simple data-base. The
paper concludes with a discussion.

2 The Identification of Emotional
Dispositions

The problem we face first in this program is to
identify which outputs of the overall system of
figure 1 correspond to which of the three basic
emotional dimensions. We introduced these in the
previous section as:
 activation
 evaluation
 action

These were the three dimensions which were
recognised from the study of Cowie et al [4] to be
important determinants or descriptors of emotional
words used by subjects studying them. The first two
of these dimensions were used in the first phase of
the study [4]; the third was used in the study of
emotional schema employed by the same subjects
when assessing the same emotional words. There are
other dimension of relevance that were employed in
the study, but action direction was found to be a
useful third dimension to separate otherwise
indistinguishable words, such as anger and fear. We
now turn to possible neural identification of each of
the above emotion dimensions in turn.
  Let us first consider evaluation. That can be
assessed immediately by means of overall activities
of neurons in all of the sites of figure 1. Such an
assessment would, however, not take account of
known results from brain imaging that indicate the
amygdala is the main site of activation for giving the
emotional salience of a particular input (be it
external or imagined). This is supported by the well-
known Kluver-Bucy syndrome in subjects with loss
of amygdala. For them affect is lost and all inputs
have similar value. Monkeys without amygdala are
not frightened by the appear-ance of their keeper or
by a snake, an otherwise fearful object. Thus we
initially propose to take the net output of the
amygdala as giving the level of evaluation for the
input, in other words its salience.
  A result now available from brain imaging is that
the amygdala can be activated for inputs which
possess either positive or negative salience to a
given subject. Thus while the amygdala level of
activation gives an overall absolute value of
activation, as determined by its feedback to cortical
sites leading to conscious experience, there must
also be a signature factor determining whether or not
this salience is positive or negative. This signature is
taken to be the value of the difference between the
amygdala ongoing activity and its mean level.
  We employ the autonomic system response to give
the level of activation, the second of the three
emotional dimensions in our analysis. This total



autonomic system response is highly complex. To
simplify we will solely take the output of the
hypothalamus as this activation level of the
corresponding emotion.
  Finally we turn to consider the action response in
the emotional situation. This is given by the overall
output of the system for action. We take this to be
the overall output of the VP, which is the controlling
system for motor responses. Again there is a
signature to be attached to this action response, be it
either towards the object under emotional evaluation
or away from it. We take this action signature to
have the same sign as that arising in the evaluation
of the amygdala signal. Such an identification has a
strong prediction: that all emotion words will reside
in the upper right-hand or lower left hand quadrants
of the action-evaluation plane (ignoring the other
dimension of activation level). This is satisfied by
the results from the Cowie et al study [4] with the
eight emotional words worried, afraid, angry, sad,
happy, loving, exited and interested being only in
these two quadrants.
  We have now given a complete description of the
manner in which the outputs from the neural system
of figure 1 are to be related to the three dimensions
of emotion words, and the related underpinning by a
three-dimensional space of emotions. It is now the
appropriate time to turn to the possible neural
implementation of this identification given above of
the neural system of figure 1.

3 Neural Implementation
3.1 General Neural Systems
It is clearly not feasable to attempt at this stage to
implement all of the modules in figure 1. Before we
turn to stripping the model down to its barest
essentials, let us consider what is presently available
in terms of known neural network architectures. We
already have several models of the hippocampus in
terms of quite different principles. One class of
models is based on the attractor net storage of
information [5,6]; this regards the CA3 cell field in
the hippocampus as having enough lateral
connectivity to qualify as such a network. Another
class uses randomly generated sparse subsets in a
suitable hidden layer, such as CA3, to encode inputs
by changing efferent and afferent weights, and gives
a considerably higher retrieval capacity, especially
for degraded inputs [7]. The amygdala has
connectivity allowing it to be treated as a feed-
forward network [8]. The prefrontal cortex, the
nucleus accumbens and ventral pallidum, form a
recurrent system of modules which constitute the so-

called ACTION network which can learn response
sequences [9,10]. There are various approaches to
modelling the dopamine system  using TD-learning.
Thus altogether there would appear to be neural
models of all of the modules present in figure 1
except for the hypothalamus. That will be modelled
in terms of distance from a set point, and a signal
given proportional to the distance of the system
from that set point value, such as for temperature or
water.

3.2 The ‘2-Weights Model’ of DA
Learning in VTA
Not all of the above models are appropriate. Thus
we wish to model the dopamine output from VTA in
figure 1 to act as a reward system. However it has to
have novelty value from the PFC, and needs also the
gating action of the hippocampus on the output of
the amygadala to the NACC, since otherwise
response would occur to novel inputs with no, as yet
known, salience value. To prevent that we use the
fact that the AMYG output to NACC is gated by
HC. Such gating prevents a novel input (giving no
output from HC) from being able to activate NACC
incorrectly. Only after learning of the reward value,
arising from HYP to VTA, will the reward value of
the input be learnt by VTA neurons and thence
allowing the learning by AMYG of the salience of
the input. At the same time we note that the AMYG
has direct output to the hypothalamus,
corresponding to the primitive response patterns
learnt without cortical support.
  Given the above structure, the crucial component is
that involving dopamine. We model that by the
simple model of figure 2, which incorporates several
features of an earlier model [11]. The activation and
training rules are:
y=tanh|ws-r| (1)
z=vs (2)
dw/dt=ys-w (3)
dv/dt=f(y)s-v (4)
where f is a function of its variable which is
negative for small values and then turns positive to
become a positive constant for large values of its
variable.
  This behaviour arises from experiemental analysis
of the modulatory effects of dopamine on learning:
LTD arises for low dopamine levels but LTP occurs
when dopamine levels become strong enough. The
results of this set of activation/learning rules are
consistent with observations made in various parts
of the limbic system.
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Figure 2. Model of dopamine (DA) learning of the
reward value of an input by the VTA, using the ‘2
weights model’ of Krekelberg and Taylor [11]. The
primary reward r is input from the hypothalamus,
and is a measure of the intrinisic value of reward
obtained by consummatory actions made in
association with the input.  The weights v and w are
trained by learning rules to learn the reward value r
of the relevant input.

  In order to apply the identification of the three
dimensions of emotions we developed in the
previous section to the model of figure 2 we must
augment it by three modules: the VP, HYP and
Amygdala. The last of these we take to be an MLP,
as noted earlier; the first and second we simplify to
single nodes.

3.3 The Extended Model of Salience/
Evaluation Learning

We now have to extend the 2-weights model so as to
allow the salience of the input to be learnt by the
amygdala. This is achieved, in terms of figure 1, by
learning the input to the amygdala, with learning
rate the response of VTA. The amygdala output to
NACC has two components: one passing through
the VTA, and giving the reward value of any input.
The other, not through VTA, is trained by using the
DA output from VTA, as previously it was for
figure 2.  We do not include the VP, but take its
output to be given by that of the NACC. The
resulting network system is shown in figure 3.
  The net system of equations is now:
y=tanh|ws-r| (5)
z=vs (6)
dw/dt=ys-w (7)
dv/dt=f(y)s-v (8)
du/dt=f(y)s-u (9)
A=us            (10)
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Figure 3. The augmented network of figure 2, with
inclusion of the amygdala and hypothalamus. There
is an overall weight u for inputs to the amygdala,
also trained by us of DA from the VTA.

Again the results of this system of equations will
provide a model of modulated learning in which
rewards are transferred from the primary reward
value r to the VTA dopamine output, in a similar
manner to the system of figure 2; we do not repeat
the details.

3.4 Dispositions
We finally come to the output side of the
motivational circuit of figure 1. This arises from the
VP as a control system acting on the motor decision
systems, firstly involving the prefrontal cortex, and
then moving dorsally to the motor cortex and motor
components of the thalamus. At the same time there
are dispositional states arising from the control by
hypothalamus, and related sub-cortical sites of the
autonomic and endocrine system mentioned earlier,
and which are aroused by the amygdala [8]. The
final determiner of the dispositional state is the
salience of the input, as coded in the amygdala.
  As noted above, we model the amygdala by a feed-
forward neural network with several hidden layers.
This allows work on learning the emotional coding
of inputs, such as faces, by such a multi-layer
perceptron, to be recognised in terms of modelling
of the amygdala. However the resulting models use
coding of emotions directly, and not of dispositions
to act. It would be possible to train the MLP directly
on dispositions as outputs, instead of emotions, for
given face inputs. We use three separate outputs
(action, activation, evaluation) to give a catoon
version of the models of figure 3.



4 Training on Face Emotional Ex-
pression with Continuous Values.

In a previous study we explored the generalization
capabilities of several architectures to classify novel
emotional face images into the four classes neutral,
happy, angry, and sad. The comparison showed, that
only the multi-layer perceptron (MLP), trained by
the backpro-pagation of error algorithm  and using a
cross-validation procedure, is able to generalize well
to novel face images. However, the generalization
performance depends on a good alignment of facial
keypoints like the eyes and the facial shape. A
limitation of the classification approach is the
exclusive assignment of the facial expression to one
class, which does not allow the coding of combined
and secondary emotions. Furthermore, the strength
ot the exposed expression is not coded by the
classification scheme and some of the face images
which show only subtle changes during a facial
expression were incorrectly classified as neutral due
to the small changes of the facial shape.
  To remedy these limitations we modified a MLP-
network to continuous output variables resembling
the three dimensions evaluation, activation and
action (see [13] for a minimal „mnemonic“ network
for action responses). The training procedure using a
cross-validation scheme was the same as in the
previous study [14,15] except for the use of
continuous target values for the exposed
expressions. The target values for the expressions
happy, angry and sad (Table 1) were determined in a
psychological study of emotional words [4] relative
to the baseline (0,0,0) for a neutral word.

Neutral  happy  angry   sad
Evaluation 0.0 + 0.5 - 0.7 - 0.8
Activation 0.0 + 0.5 +0.65 - 0.15
Action 0.0 + 0.75 - 0.1 - 0.8

Table 1 Target values for the primary emotions.

  The data-set consists of 20 persons showing the
four primary facial expressions. After normalizing
and cropping the faces to 35x37 pixel images, four
persons were excluded due to a large misalignment
or missing data. The remaining 16 images for each
expression were split into 12 training images, three
validation images and one test image.
  Figure 4 shows the final activations of the 48
training examples from a single run in the three-
dimensional activation-evaluation-action space.
Although the activations show some spread around
the target values, a clear separation into four clusters
can be observed.

Fig. 4 3D-plot of the Activation-Evaluation-Action
Space for the MLP-network trained on neutral
(square), happy (plus), angry (triangele), and sad
(half-circle) face images.

  Figures 5 to 7 show the activations of four trials
with 12 training examples for each facial expression
along the evaluation-activation plane (Fig. 5), the
evaluation-action plane (Fig. 6) and the activation-
action plane (Fig. 7). In figure 5 the target values are
overplotted as stars and the network responses to the
novel images are plotted as crosses and plusses. The
generalization performance for the depicted four
runs was almost perfect but reached lower levels for
the remaining runs of the cross-validation procedure.

5 Conclusion
We have shown that interpreting the output of a
neural network for facial expression recognition as
continuous variables of a three-dimensional state-
space leads to an improved recognition performance
compared to binary classification. Furthermore, the
classification scheme allows for a better evaluation
of the network performance since no thresholding or
maximum search is necessary and all variables
contribute to the classification of the expression.
  The proposed scheme can be directly mapped onto
limbic brain structures discussed earlier by
identifying the amygdala with a part of the multi-
layer perceptron, associated to the evaluation output,
the NACC/VP as associated to the action output, and
the HYP/PFC to th activation output.



Fig. 5 Evaluation/Activation plane for the MLP-
network trained on neutral (square), happy
(diamond), angry (triangele), and sad faces (circle).
The star marks the target values, plusses and crosses
mark generalization output for three correctly
classified test images. See text for further details.

Fig. 6 Evaluation/Action plane; same as Fig. 4.

Fig. 7 Activation/Action plane; same as Fig. 4.
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