
Simulation and bootstrap on a pRAM architecture
B. Apolloni, A. Brenna , D. de Falco

Dipartimento di Scienze dell’Informazione, Università di Milano
Via Comelico 39-20135, Milano, ITALY

apolloni@dsi.unimi.it

J. G. Taylor
Department of Mathematics, King’s College London,

Strand, London WC2R 2LS, ENGLAND
john.g.taylor@kcl.ac.uk

Abstract We discuss the task of interpolating discrete probability densities resulting from the truncation of the
binary representation of continuous random variables. We consider both the case in which the initial density is
known and a simulator is to be programmed, and the case in which a random sample is given and a bootstrap
resampling procedure is to be developed. We point out that the parametrisation of the discrete density suggested
by the pRAM (probabilistic Random Access Memory) architecture and the use of Bernstein polynomials for its
interpolation constitute an excellent hardware-software combination, able to provide a sagacious smoothing of the
histogram of the truncated data.
Keywords: pRAM, Bernstein polynomial, density estimation, bootstrap.   CSCC'99 Proceedings:-Pages 5361-5366

1. Introduction
Let X be a continuous random variable, taking values
in 0,1[ ], FX x( ) = P X ≤ x( ) its  cumulative
distribution function, and fX x( )= dFX x( ) dx  its
probability density.

In most of this paper we shall use, as an example, the
cumulative distribution function and the probability
density plotted in Figure 1.

Let X = X j 2 j

j =1

∞

∑ = (0.X1X2 ....)2  be the binary

representation of X. Having fixed the positive integer
νν , the joint probability law of
X 1,X 2, .. .,X νν( ), the first νν    digits in the

binary representation of X , is easily written in terms
of FX  as
P X1 = x1; X2 = x2;...;Xν = xν( )

= P
x j

2 j
j =1

ν

∑ ≤ X <
x j

2 j + 1

2
ν

j =1

ν

∑
 

 
  

 
 

= FX

x j

2 j + 1

2
ν

j =1

ν

∑
 

 
  

 
 − FX

x j

2 j
j =1

ν

∑
 

 
  

 
 

We can also write, in terms of the conditional
probabilities

α t, x1, x2, ...,x t −1( )( )
= P Xt = 1 X1 = x1;X2 = x2;...;Xt −1 = x t −1( ),

a          b
Figure 1 All our numerical examples will refer to the example (a mixture of normal and exponential laws) shown

above. a. cumulative distribution function; b. probability density



5362

this probability law as:

P X ν( ) =
x j

2 j
j =1

ν

∑
 

 
  

 
 = P X1 = x1; X2 = x2 ;...; Xν = xν( )

= P X1 = x1( )⋅ P X2 = x2 X1 = x1( )
⋅ P X3 = x3 X1 = x1; X2 = x2( )
⋅... ⋅ P Xν = xν X1 = x1; X2 = x2 ;...; Xν −1 = xν −1( )
= α 1,( )( )x 1

1 − α 1,( )( )( )⋅α 2, x1( )( )x 2

1− α 2, x1( )( )( )1− x2

⋅α 3, x1, x2( )( )x3
1− α 3, x1, x2( )( )( )1− x3

⋅

... ⋅α ν, x1,..., xν −1( )( )xν
1 − α ν, x1, ...,xν−1( )( )( )1− xν

where

αα 1 ,  ( )( )≡ P X 1 = 1( )= P X >1 / 2( ) = 1− FX 1 / 2( )

 

α t, x1, x2, ...,x t −1( )( )

=
FX

x j

2 j +
1

2t −1
j =1

t −1

∑
 

 
  

 
 − FX

x j

2 j +
1

2t
j =1

t −1

∑
 

 
  

 
 

FX

x j

2 j +
1

2t −1
j =1

t−1

∑
 

 
  

 
 − FX

x j

2 j
j =1

t −1

∑
 

 
  

 
 

     (°)

The main point we wish to make here is the following:
for fixed νν  , and known values of the parameters

αα t ,  x1,x 2 ,. .., x t −1( )( ) , 1 ≤ t ≤ νν ,

x1,x 2 ,..., x t −1( )∈ 0,1{ }t −1
 ,  the simulation of

X 1,X 2, .. .,X νν( ) and, therefore of X νν( ) , is easily

performed in hardware by a pRAM [1] with νν
nodes. This machine is a RAM-based hardware that
implements a stochastic neural network. Each

RAM address contains a real number (between 0 &
1) which is used to emit a one with that probability
when the address is accessed. Using this bit to form
the address of the next accessed memory,  the pRAM
output is a string of random bits, where  the content
of a memory constitutes the conditional probability of
a bit given certain others in the string. These
probabilities can be modified, either by the operator
or through learning algorithms.

This observation opens up two perspectives of
application of the pRAM architecture, summarised in
Table 1.
The two applications share the following interesting
theoretical problems:
•  what does " νν  suitably fixed" mean ?
•  how to cope with hardware limitations, that impose
severe restrictions on the fan-in of each pRAM node
? Notice that the representation of

P X ν( ) = x j 2 j

j =1

ν

∑
 

 
  

 
  given above requires that node

i  has fan-in i − 1  .
Here we experiment with the two applications in
order, mainly, to gain an insight into the operational
meaning of the theoretical problems.
In the next two section we stress the above two points
by working a suitable Bernstein polynomial
approximation of the template distribution, both in
simulation and in bootstrap modality. Then, in
section 4, we extend our approximation method to a
bidimensional distribution law. There is a brief
conclusion at the end of the paper.

2. Simulation
Simulating FX  with a pRAM consists in loading  its
memory contents α  according to (°).

Simulation

FX  is known;

νν  is suitably fixed;

the parametersαα t ,  x1,x 2 ,. .., x
t −1( )( ) are

computed from  FX .

A pRAM running with the computed αα' s  gives a
simulator of X νν( ) .

Bootstrap [2]

FX  unknown;

a random sample of X is observed and digitised to a
suitable number νν  of bits;

the parameters αα t ,  x1,x 2 ,. .., x
t −1( )( ) are estimated

from the random sample.

A pRAM running with the estimated αα' s  gives a
generator of bootstrap samples of X νν( ) .



5363

Table 1. Two application frameworks of the pRAM architecture.

Figure 2. The 27 = 128  conditional probabilities
stored in the 8-th pRAM unit.

For instance, values of α 8, x1, x2 ,..., x7( )( )with the 27

possible assignments to , x1, x2,...,x7( ) are plotted in

Figure 2.
Truncating X to the first νν  bits corresponds to
storing conditional probabilities up to the first ν ν units
of our pRAM device, with obvious approximations
that, for instance, appear when we rebuild the
cumulative distribution function from data simulated
by this device, as in Figure 3.
As shown in Fig. 3.b, the simulator gives a discrete
random variable with values separated by steps of
1 2 νν or 1/ 256  in our example with 8 nodes.
Notice, however, that from the knowledge of the α' s
loaded on a pRAM with ν   nodes, one can
reconstruct the values of FX  at all points of the form

k 2 νν , for k = 0,...,2 νν . Therefore, one has all the
coefficients needed to write the Weirstrass-Bernstein
[3] polynomial B[F

X
,2ν , x]  of degree 2 νν   associated

to  FX .

Moreover, denoting by fX x;n( )= d

dx
B[FX ,n +1, x]

the n-th degree approximation of f X  coming from the
approximation of  FX  with B[FX ,n + 1,x] , we have:

fX x;n( )=
d

dx
B[FX,n + 1, x]

=
n +1( )!

k −1( )!⋅ n − k( )!k =0

n

∑ ⋅ xk ⋅ 1− x( )n− k

⋅ FX

k

n + 1
+

1

n + 1
 
 

 
 − FX

k

n + 1
 
 

 
 

 
 

 
 

Now, since

 fU n+1, k+1[ ] x( )≡
n + 1( )!

k −1( )!⋅ n − k( )!
xk ⋅ 1− x( )n− k

is a

Beta probability density describing the law of the
(k+1)-th order statistic of a sample of size n+1 drawn
from the uniform population on [0,1], and

FX

k
n +1

+ 1
n +1

 
 

 
 − FX

k
n +1

 
 

 
 

= P
k

n + 1
< X ≤ k

n + 1
+ 1

n + 1

 
 

 
 

the above density reads

fX x;2
ν −1( )= d

dx
B[FX ,2

ν
, x]

= f
U 2ν , k +1[ ] x( )

k = 0

2ν −1

∑ ⋅ P X ν( ) = k
2ν

 
 

 
 

A random variable having this convex combination of
probability densities as its probability density is easily
simulated.

                 a          b
Figure 3. Comparison between the cumulative distribution function in fig. 1

and the empirical distribution function of a sample of size 1000 generated by an  8 unit pRAM.



5364

a. full picture;    b. zooming on a piece.

a       b
Figure 4 Using only  information on the contents of nodes 1-8, the Bernstein approximation
amounts to making the conjectures shown above on the contents, for instance, of units 9 and 10.

dots→ true parameters (not stored in the pRAM before Bernstein smearing);
graphically interpolated graphs→Bernstein inferred parameters

Figure 4 shows that constructing, for instance,
B[F

X
,28, x]  from the contents of only  the first 8

nodes amounts to making a very educated guess on
what the contents of the following nodes should be.
Analysing the Bernstein contribution in filling the
gaps in fig 3.b, we realise that over the discrete step
necessarily provided by the original pRAM, our
smearing algorithm adds a very selected amount of
noise, whose mean value and variance change as in
fig. 5, depending on X ν( ) . Stated otherwise, starting

from the knowledge of fX  in a limited number n of
points - possibly the set of    ν  -bit rational numbers
in [0,1]- we interpolate these values with a mixture of
Beta variables [4] arising from the sole assumption
that FX is continuous and the mandatory target that
this interpolation converges with increasing ν  to FX.

This smoothing is not uniform, as could be suggested
by the obvious idea of adding equally distributed extra
bits, but is decreasing with X ν( )  with a variance that

is a maximum at the centre of the interval.

3. Bootstrap
Here FX  is unknown the task is to determine f, to
within a suitable approximation. A random sample of
size m , call it  X 1( ) ,  X 2( ) ,... .,  X m( ) will be,
instead, drawn from the population FX  and the
pRAM parameters will be estimated as indicated by
the arrow:
αα 1 ,( )( )≡ P X 1 = 1( )= P X >1 / 2( ) = 1− FX 1 / 2( )

 →A m 1( ) =
1

m
X 1 i( )

i =1

m

∑

a       b
Figure 5 The Bernstein smearing contribution depends on X ν( ) , the raw output of a ν  node pRAM.

a. mean value and b. variance of the Beta noise added to X ν( )



a b
Figure 6. The result of training a pRAM with 8 nodes by parameter estimation

based on m = 500  "experimental data".

α(k, (x)) → Am (k, (x))

=
Π
j =1

k −1
X j i( )( )x j i( )( )

1 − X j i( )( )1− x j i( )( )
⋅ Xk i( )

i=1

m

∑

Π
j =1

k −1

X j i( )( )
x j i( )( )

1 − X j i( )( )
1− x j i( )( )

i =1

m

∑

Figure 6, shows the result of the following numerical
experiment: an  8-units pRAM has been trained,
according to the previous formulas, on a random
sample of sizem = 500 drawn according to FX ; the
probability law of its output has been computed from
the estimated parameters and is shown in 6 a.
Three effects make this plot differ from the true
(unknown to the pRAM) density function shown in
the background:  i. the sample points do not load all
pRAM parameters (in our actual numerical
experiment the pRAM has seen only 161 different 8-
bit words, so that 255 − 161 = 94  parameters have
remained undefined); ii. the loaded parameters are
themselves poor estimates of true conditional
probabilities; iii. the pRAM simulates, in fact, a
discrete random variable taking only values

 separated by steps of 1/256.
Figure 7 summarises the results of the following
experiment: the network, call it pRAM1, trained as in
figure 6, has been asked to simulate the extraction of
a sample of size 10000 according to its law of fig.
6.a. These data have been contaminated with Beta
noise (coming from Bernstein approximation) and
shown to another, initially untrained,  8-node network,
call it pRAM2, set in learning mode. pRAM2,
without seeing any of the original experimental data,
has estimated its parameters on the basis only of the
sample issued by pRAM1. Figure 6.b. shows the
parameters loaded in node 8 of pRAM1; Figure 7 b.
shows the parameters loaded in node 8 of pRAM2;
comparison is made, in both cases with the true
parameters represented by the graphically interpolated
line.
Figures 6 and 7 show the beneficial smoothing effect
of "rethinking for a long time (in our case 10000
steps)" the  model built from a few (in our case 500)
experimental data points, contaminated by a
reasonable amount of noise.

                        a b
Figure 7. The result of training a pRAM with 8 nodes by parameter estimation based on m =10000  "bootstrap
data" generated by the pRAM of the previous figure, contaminated by the Beta noise of fig. 5.



         a             b       c

Figure 8.a. scatter plot of the “experimental data”; b. reconstruction of figure a performed by an 8+8-node
pRAM; c. the effect of Bernstein smearing on b.

4. From scalar to vectorial variables
A two component random variable X,Y( )  can be
studied by essentially the same techniques as used
above. The probability density corresponding to the
Bernstein polynomial approximation  (of degree
n +1 = 2ν  in each variable) to the joint cumulative
function FX ,Y  can be written as

f X, Y x,y, n( ) =
k = 0

2ν −1

∑ f
U 2ν ,k +1[ ] x( ) f

U 2ν , h+1[ ] y( )
h=0

2ν −1

∑     

⋅P X ν( ) =
k

2ν ,Y ν( ) =
h

2ν
 
 

 
 (°°)

A random variable having this density is, in turn,
easily simulated as a mixture of pairs of independent
order statistics.

Simulation of the weights P X ν( ) =
k

2ν ,Y ν( ) =
h

2ν
 
 

 
  of

the mixture is easily performed by a 2 ⋅ν  - node

pRAM loaded by a sample of X ν( ),Y ν( )( ) seen in the

format   X1,Y1, X2,Y2KXν ,Yν( ).

In figure 8. a.  we show the scatter plot of a set σ  of
m=5000 “experimental points”.

Figure 8.b is the scatter plot of a set σ '  of 5000
points drawn by an 8+8-node pRAM trained on σ . In
fact, σ '  has  only 2470 different elements.

Figure 8.c presents the effect of adding bivariate Beta
noise to each point of σ ' .

5. Conclusions
Compressing continuous into discrete variables is a
mandatory action in digitally storing and managing
signals. Viceversa, rebuilding continuous signals is a
routinely job of our mind , for instance in watching
TV and in many other, more intelligent, activities. In
this paper we present a restoring mechanism that has
two features: i. it works efficiently with a limited
amount of computational resources and ii. it can be
used to complement efficiently the performance of
available neuromimetic hardware [5].

References
[1] Clarkson T.G., Gorse D., Taylor J.G., Ng C.K.
Learning probabilistic RAM nets using VLSI
structures. IEEE Transactions on Computers. 41,
1552-1561 (1992).
[2] Efron, B., & Tibshirani, R. (1993). An
introduction to the Bootstrap. Chapmann and Hall,
Freeman, New York.
 [3]Lorentz G.C. Bernstein Polynomials. Universityof
Toronto Press (1953)
[4] Wilks, S.S. (1962). Mathematical statistics. John
Wiley, N.Y.
 [5] pRAM-256 data sheet. Department of Electronic
and Electrical Engineering, King’s College, London
(1994).


