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Abstract:- This paper describes an integrated system for human emotion recognition. While other techniques extract
explicit motion fields from the areas of interest and combine them with templates or training sets, the proposed system
compares evidence of muscle activation from the human face to relevant data taken from a 3-d model of a head. This
comparison takes place at curve level, with each curve being drawn from detected feature points in an image sequence
or from selected vertices of the polygonal model. The result of this process is identification of the muscles that
contribute to the detected motion; this conclusion is then used in conjunction with neural networks that map groups of
muscles to emotions. The notion of describing motion with specific points is also supported in MPEG-4 and the relevant
encoded data may easily be used in the same context.
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1. Introduction
The facial expression recognition problem has lately
undergone various approaches that may be divided in
two main categories: static and motion dependent. In
static approaches, recognition of a facial expression is
performed using a single image of a face. Motion
dependent approaches extract temporal information by
using at least two instances of a face in the same
emotional state. Fully dynamic approaches use several
frames (generally more than two and less than 15) of
video sequences containing a facial expression, which
normally lasts 0.5 to 4 seconds. The latter case, which
seems to be the most promising, has up to now involved
data analysis in the form of optical flow energy
estimation and energy templates, or region tracking and
region deformation estimation, or even 3-d model
alignment [1]. In our approach, automatic feature point
extraction and motion estimation upon the extracted
points is performed. This aims at observing the
temporal movement of facial key-points, which reveals
the type of emotion taking place in a video sequence.
The comparison is based on synthetic 3-d generated
prototypes for the corresponding points. Matching real
and synthetic results, and thus classification, is
accomplished through the use of neural networks.

2. Facial muscles and emotions
The interaction of the facial muscles and the expression
of emotional states has been in the focus of attention of
many scientists. Researchers during the 19th century
divided the facial muscles into groups, with respect to
the emotions during which they are activated. Although
this mapping does not conform with recent anatomical
studies, it was used as a basis to minimize the
continuous and perceptive nature of a human emotion
into discrete and, in a way, countable features.

This mapping was well improved by Ekman’s
pioneering work in FACS [2]. Ekman conceived the
notion of an action unit, which is in essence the
recognizable result of the flexing of a single or a small
group of facial muscles. The 66 action units (AUs) that
can be identified can be combined to generate or infer
facial expressions; in some cases, more that ten action
units can be recognized in a single movement or
expression, while in others only a single AU is
involved. This is a result of some motions being
difficult to classify, based on mere visual data; in such
cases, FACS defines an individual AU that involves all
the muscles in the region or includes the same muscle in
different units.

The scope of FACS imposes some limitations in the
sense that action units can only describe visually
distinguishable facial movement and not any possible
changes. In fact, this is not exactly the case with the



lower part of the face, as the independent movement of
the jaw and the flexibility of the lips allow a great
number of visually perceivable, but virtually identical
actions. Also, it does not tackle the problem of emotion
or expression synthesis and recognition.

The FACS tables were derived by anatomical and
physiological studies of the human face. This
knowledge can help one understand and encode facial
actions and reduce them to features and symbols. One
can suggest that the movement of the facial bones and
skin is a result of muscle contraction. The reverse may
also be implied, that is, the visual or intuitive fact that
there is motion in a human face can be connected with
muscle movement. Thus, if we can detect and recognize
a change in a human face, we can safely deduce that at
least a single muscle has flexed.

Fig 1. Structure and position of facial muscles

Not all facial muscles contribute to expressions ; some
perform actions related with moving the jaw or forming
the phonemes. The muscles that are related to
expressions are superficial, i.e. near the surface of the
head, and are responsible of the general shape of the
head. Most of these muscles work collectively; as a
result, it is difficult to separate the margins between the
areas of influence of distinct muscles (see Fig. 1).
However, each area of the face is mainly affected by a
single group’s contraction. In addition to that, the
deformation of the surface of the face is not standard
throughout the face, as a result of the different
orientation of the facial muscles and the way they flex.
For example, the muscle that is accountable for the
motion in the cheeks, zygomatic major, contracts in a
linear fashion, while orbicularis oculi, the muscle
around the eyes compresses its area of influence
circularly. Thus, one can assume made that the
observation of motion in the skin of the face and the
tracking of its path can deduce the flexing of specific
facial muscles. Let us assume that we have detected
motion in the inner eyebrow area; the anatomy of the
face inform us that this location moves under the
influence of three distinct muscles, the frontalis, which

is the muscle that covers the forehead, the depressor
supercilii, the muscle under the medial end of the
eyebrow and the depressor glabelle, which runs
parallel and between the eyebrows. All these muscles
are linear, so we expect the motion to follow a parallel
path to one of them or a linear combination, if more
than one is activated. The combination of this fact and
the position of these muscles can help us conclude that
if the median part of the eyebrow moves upward, this is
a result of the flexing of the frontalis muscle, while the
descending motion occurs when the depressor
supercilii flexes. If the motion detected in this area is
not parallel to the coronal plane of the head but is an
aggregation of upward and lateral movement, then both
the frontalis and the depressor glabelle are flexing.

3. Utilization of the 3-d model
In order to classify the motion of the different areas of
the face, we use a 3-d model of a complete human head.
Although the employment of a simple mask might
simplify numerical operations, it would not be suitable
for re-synthesizing the expression. Despite the diversity
of the shape of the head between humans, the
assumption that any conceivable motion in this area
occurs as a result of muscle flexing and the knowledge
of facial anatomy help us extend these results to the
vast majority of the human faces. Most people smile in
different ways and with unlike visual results; in any
occasion, though, this expression is a result of the
contraction of the same muscles to the same track.

The model that is employed is a medium-resolution
polygonal model of the surface of the head (about 8K
vertices). Higher polygon counts would not assist our
goal and would make operations much more complex.
Areas of vertices are grouped w.r.t. the facial feature to
which they correspond and the muscles responsible for
their transformation. This mapping is a result of
anatomy surveys and is not based on any mathematical
models or measurements. The nature of each muscle
helps us model the deformation of the overlying
surface; that is, the flexing of linear muscles results in
the forming of an elevated or furrow shape in the
surrounding area, while circular muscles produce radial
motion in their areas of influence.

The outcome of the modeling process is a library of
possible muscle actions. Some of these emotions are
termed universal [3] as they can be recognized across
different cultures. Humans can recognize and describe
these fundamental emotions in a standard manner. For
example, the eyebrows of an afraid person are slightly



raised and pulled to the medial plane, while the inner
part is translated upward. Similar ideas and notions
have been classified into the look-up tables of the
Mimic Language. The system utilizes the fact that
facial expressions are the result of dynamic and static
factors, both being influenced by the mental and
emotional condition of the subject. While the static
aspects are determined by the shape and structure of the
specific face and therefore cannot be generalized, the
dynamic expressions are produced by the universal
muscle influence.

4. Feature point extraction
4.1 Template matching
An interesting approach in the problem of automatic
facial feature extraction is a technique based on the use
of template prototypes, which are portrayed on the 2-d
space in grayscale format. This is a technique that is, to
some extent, easy to use, but also effective. It uses
correlation as a basic tool for comparing the template
with the part of the image that we wish to recognize.

An interesting question that arises, is the behavior of
recognition with template matching in different
resolutions. This involves multi-resolution
representations through the use of gaussian pyramids.
The experiments proved that not very high resolutions
are needed for template matching recognition. For
example, the use of templates of 36×36 pixels proved
sufficient. This fact shows us that template matching is
not as computationally complex as we originally
imagined.

4.2 Gabor Filtering
It is possible for Gabor filtering to be used in a facial
recognition system. The neighboring region of a pixel
may be described by the response of a group of Gabor
filters in different frequencies and directions, which
have a reference to the specific pixel. In that way, a
feature vector may be formed, containing the responses
of those filters.

One form of the Gabor filter is the following:
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where x, y is a point location, u, v govern the filter’s
central spatial frequency, which determines its
orientation, and the parameters ó control the width of
the Gaussian window relative to the wavelength
corresponding to the central frequency [4].

As mentioned above, the feature vector consists of the
responses of the filters in different central frequencies
and for a specific position. During the comparison of
two images, the phase difference of the response of
each filter corresponds to local variation towards the
filter’s direction. These local position variations are
combined to express the ‘distance’ of the two images.

4.3 Automated Facial Feature Extraction
In our approach, as far as the frontal images are
concerned, the fundamental concept upon which the
automated localization of the predetermined points is
based, consists of two steps: the hierarchic and reliable
selection of specific blocks of the image and
subsequently the use of a standardized procedure for
the detection of the required benchmark points.

In order for the former of the two processes to be
successful, the need of a secure method of approach
emerged. The detection of a block describing a facial
feature relies on a previously, effectively detected
feature. By adopting this reasoning, the choice of the
most significant characteristic -the ground of the
cascade routine- had to be made. The importance that
each of the commonly used facial features, regarding
the issue of face recognition, has already been studied
by other researchers. The outcome of surveys proved
the eyes to be the most dependable and easily located of
all facial features, and as such they were used. The
techniques that were developed and tried separately,
utilize a combination of template matching and Gabor
filtering [4].

After having isolated the restricted regions of interest
from the frontal image, the localization of the
predetermined points ensues. The approximate center of
the eye’s pupil is searched as the darkest point both at
the integrated horizontal and vertical direction of the
eye’s block. The exact position of the nostrils is sought
from the sides to the center of the nose block. The
mouth tips are met in a similar manner. Finally, the
right and left head edges at the altitude of the eyes are
retrieved from the horizontally integrated vector
describing the area where the temple hair starts. It is
obvious that the whole search procedure was attempted
to be as close to human perception as possible.

4.4 The Hybrid Method
The basic quest of the desired feature blocks is
performed by a simple template matching procedure.
Each feature prototype is selected from one of the
frontal images of the face base. The practiced



comparison criterion is the maximum correlation
coefficient between the prototype and the repeatedly
audited blocks of a smartly restricted area of the face.

In order for the search area to be incisively and
functionally limited, the knowledge of the human face
physiology has been applied, without hindering the
satisfactory performance of the algorithm in cases of
small violations of the initial limitations.

However, the final block selection by the mere use of
this method has not always been crowned with success.
Therefore, the need of a measure of reliability came
forth. For that reason, the use of Gabor filtering was
deemed to be one suitable tool. As it can be
mathematically deduced from the filter’s form, it
ensures simultaneous optimum localization in the
natural space as well as in frequency space.

The filter is applied both on the localized area and the
template in four different spatial frequencies. Its
response is regarded as valid, only in the case that its
amplitude exceeds a saliency threshold. The area with
minimum phase distance from its template is considered
to be the most reliably traced block.

4.5 Correspondence with the MPEG-4
synthetic model
The MPEG-4 standard uses the VRML as a starting
point for its synthetic capabilities. However, this
description proved insufficient for the  needs of the
standard. This is the reason that various capability
extensions have been incorporated. Among others is the
synthetic face and body (FAB) animation capability,
which is a model-independent definition of artificial
face and body animation parameters. Through the
adopted coding, one has the potential of compactly
representing facial expressions via the movement of a
set  of feature points. This set consists of a numerous
gathering of points that are defined on a 2-d or a 3-d
head mesh, as it may be seen in [5]. The feature point
set supported in this work is a subset of the MPEG-4
coding system, merely because that is sufficient for
discrimination purposes, which is the aim of the current
work. However, progress is being done by our group
upon the enhancement of the original, automatically
extracted feature point set. Moreover, feature point
motion estimation in combination with 3-d recovery
techniques for human faces in video sequences,
supports the MPEG-4 context, a fact that directly
means the embodiment of facial expression coding in
terms of the standard.

5. Feature point motion estimation
Block matching methods are being broadly used in
various motion estimation problems for video
sequences, mainly due to their ease in implementation
and their relevant accuracy, as far as the calculated
motion vectors are concerned. These are actually the
reasons that such a kind of method has been used in our
approach, in order to estimate how the feature points
have progressively moved within a specific video
sequence.

The executed block matching method aims at the
computation of the specified points’ transposition from
one frame to its successive. Let the current frame be I1
and its successive be I2. For each pixel of the current
frame I1(i,j) that is known to be a feature point ((i,j) ∈
FP), we wish to find a displacement vector

d(i,j)=[d1(i,j),d2(i,j)],

such that I1(i,j)=I2(i+d1(i,j),j+d2(i,j)). For each pixel
position (i,j) ∈ FP of the current frame, we consider an
n×n block, the center of which is the specific pixel. A
search procedure follows, which tracks the defined
block of the current frame into its consecutive frame.
This procedure will determine the motion vector of the
feature point with respect to the block’s displacement.
Searching in frame I2 is performed within a limited
N×N search window, the center of which is this frame’s
(i,j) position.

Concerning the block matching criteria and the search
methods, plenty variations have been proposed in the
bibliography. The current implementation utilizes the
Mean Absolute Difference (MAD) criterion and the so
called three-step exhaustive search method respectively.

The MAD criterion produces the proposed
displacement through the minimization of the sum:

MAD(d1,d2) =  
1
n2  ∑

∈Blk ),(
| I1(k,l) - I2(k+d1,l+d2)

|It may be seen at the above equation that this criterion
is easily and quickly realizable, even in the case
wheresome kind of an exhaustive search is being used.

The three-step exhaustive search procedure is described
in the following:

1. For each pixel position (i,j) ∈ FP of the current
frame, we select the corresponding pixel position
(i,j) on the next frame, as well as its eight
neighboring points that have a horizontal or/and
vertical distance of four pixels from the specific



position. As a result, we get the initial set of nine
points:

S1 = {(i,j), (i+4,j), (i-4,j), (i,j+4),(i,j-4), (i+4,j+4),
(i+4,j-4), (i-4,j+4), (i-4,j-4)}

upon which the first step of the search procedure
will be performed.

2. Having determined the initial point set S1, we
perform a comparison between the n×n block
defined in the current frame by the pixel position
(i,j) and each of the n×n blocks defined in the
following frame by the point set S1. The
comparison is accomplished through the use of the
MAD criterion. The element of the set S1 that
minimally satisfies this criterion, is selected to be
the center pixel position (ic1,jc1) of the next phase.

3. Except for the point (ic1,jc1), we consider its eight
neighboring points that have a horizontal or/and
vertical distance of two pixels from the specific
position. As a result, we get the intermediate set of
nine points S2, upon which the next step of the
search procedure will be performed.

4. Having determined the intermediate point set S2,
we repeat step 2, where S2 and (ic2,jc2) are
involved instead of S1 and (ic1,jc1) respectively.

5. Except for the point (ic2,jc2), we consider its eight
neighboring points that have a horizontal or/and
vertical distance of one pixel from the specific
position. As a result, we get the intermediate set of
nine points S3, upon which the final step of the
search procedure will be performed.

6. Having determined the intermediate point set S3,
we repeat step 2, where S3 and (if,jf) are involved
instead of S1 and (ic1,jc1) respectively. The pixel
position (if,jf) on the frame I2, is the one to which
the original position (i,j) on the current frame I1
has moved. The displacement vector for each
feature point between frames I1 and I2 is then
calculated as:

d(i,j) = [(if,jf) – (i,j)]

6. Expression estimation
We reduce the problem of expression estimation to the
encoding of motion curve sets that observe the feature
point paths, followed by a feature based classification
using a multi-layer perceptron neural network (NN).
Fig. 2 presents the estimation system. As it can be seen,
a preprocessing step is necessary to encode the

synthetic expressions database and train the network.
To simplify the implementation, several assumptions
are made which will be discussed in the following.

Input Video
Sequence

NN

Encoder

Extractor

Synthetic
Expression
Database

Extractor

Encoder

Expression
estimation

Fig. 2 The expression estimator

From each video sequence or synthetic expression, q
motion curves observing the benchmark points in a
three dimensional [x y t] space are extracted. Let S =
{Ci: i ∈ [1,q]} be this set of curves and ä be the
definition vector of x, y coordinates that describes the
curves over time. We project each curve to the space
axis, obtaining two-dimensional curves, for the x- and
y-axis, described by the definition vectors äx and äy

respectively. The matching algorithm processes the
projected curves independently and ultimately combines
the results. In this way a trade off between space
correlation and improved efficiency is obtained. The
complex three-dimensional problem can be tackled
using techniques discussed in [6], but is out of the
scope of this paper. In the following we will consider ä
≡ äx assuming that the results apply to äy as well.

For the purpose of this paper we assume that the input
video sequences start from and conclude to the neutral
expression. In between lies the active expression period
Ô = [tá, tâ], where tá is the last frame where all feature
points are stabilized and following the muscle
activation, tâ is the frame when the feature points are re-
stabilized. Information outside this period is rejected by
appropriately cropping ä. Using ä coordinates over time
as knots, we obtain a Non-Uniform Rational B-Spline
(NURBS) approximation of the curve, which is
subsequently re-sampled to m samples yielding a
normalized description vector ã.

While such a vector describes Ci, it is not really
appropriate for the matching process. For robust
classification we demand affine invariance properties
from the representation space. Our approach is to
transform ã to a unique feature vector ö using a



carefully designed encoding scheme, employing central
moment descriptors. The composite feature vector ù
invariantly describes the two-dimensional curve set by
concatenating the ö vectors describing each curve in S.

Using the ù vector we employ a multi-layer neural
network to match the real world input curve set against
our synthetic expression database. The network
consists of Ni = dim (ù)  = 60 input neurons that
correspond to the moments parameters, n output
neurons that correspond to the expression classes, and
2 layers of hidden neurons.

The supervised learning process we use for adapting
the neural network consists of the following steps:

• Motion curve sets are extracted for each synthetic
expression sequence.

• The encoder splits the curves in two-dimensional
components to be transformed from definition
space Ä to the feature space Ù using the encoding
scheme previously described.

• The calculated feature vectors ùi and their
corresponding output vectors provided by the
supervisor are fed to the multi-layer perceptrons
that compose our classification neural network,
thus adapting the neuron weights to our problem
domain.

During the allocation stage, the NN is fed with the
feature vector of the input video sequence. The output
vector is transformed by a sigmoid transfer function to
normalize and threshold the results producing the
expression mix vector ì, the coordinates of which
represent the matching of the input against the
respective expression class.

7. Results
The following results indicate that there is some
discrimination between the time-related paths that are
drawn from the natural images. This difference is
generally enough to distinguish muscle activation,
despite the presence of noise and error.

   
(a) (b)
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Fig. 3 (a) and (b) show the horizontal movement of the
right mouth corner for 'anger' and 'smile' respectively.
(c) and (d) show the horizontal movement of the left

mouth corner for 'anger' and 'smile' respectively.

8. Conclusion
The proposed system utilizes automatic feature
extraction and motion estimation techniques, along with
3-d face models to compare motion data to pre-defined
prototypes. This results to muscle activation
information which is mapped to groups of emotions,
through the Mimic Language. The above notion can be
extended to include MPEG-4 encoded streams or
observation of rotated heads, instead of the standard
frontal view.
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