[image: image139.wmf]
PHYSTA Report 2.3

A theory for combining subsymbolic

and symbolic representations
June 2000

Report for the TMR PHYSTA project

“Principled Hybrid systems: Theory and Applications”

Research contract FMRX-CT97-0098 (DG 12 – BDCN)

FOREWORDS

The present report aims at fulfilling the object of workpakage 5 of PHYSTA project, i.e. to state a theoretical framework for learning algorithms that combine low-level signal processing with symbol extraction. The main body of the report, that is a theoretical topic, will be discussed in an abstract way using paradigmatic examples to sustain the reader’s intuition.  However, we will reduce results to a minimum formal, framing them in a plain talk. Concluding the report is an application example of our procedure concerning a realistic learning instance in many aspects similar to the PHYSTA testbed application.

The theory we develop is a special featuring of a series of results in the field of computational learning and neural networks. For a more detailed discussion of these results we address the reader directly to the original papers. However some parts are not yet published; thus the authors have delivered in the frame of the PHYSTA project a short course on the matter open both to the researcher involved in the project and to other members of the scientific community. The proceedings of  course are available on the WEB site http://www.image.ece.ntua.gr/physta.

Milano, 29-May-00

Contents

61
Introduction

2
The global theoretical framework
8
2.1
Sample and population
10
2.2
PAC-learning and sentry functions
11
2.3
Learning with neural networks
18
2.4
A trade off between approximation and generalization.
22
3
PAC-meditation
23
3.1
Theoretical background
28
3.1.1
Frontiers and atomic formulas
28
3.1.2
Frontiers and hyperformulas
30
3.2
The systolic algorithm
36
4
Symbol grounding through neural networks
41
4.1
From features to propositional variables
42
4.1.1
Supervised part
43
4.1.2
Unsupervised part
44
4.1.3
Using a prejudice
46
4.1.4
Symbolic feedbacks
48
4.2
From propositional variables to features
51
5
The global management of the procedure and its Computational complexity
53
5.1
The global management
53
5.2
Computational complexity
54
6
Numerical examples
58
6.1
Plant Classification
58
6.1.1
The plants data
59
6.1.2
Classifying plants
60
6.2
Emotional testbeds
65
6.3
Social Dinner Evaluation
71
7
Conclusions and open points
76


List of figures

7Figure 1: Balancing the data explanation.

Figure 2: The global lay out.
9
Figure 3: Sample generation.
10
Figure 4: Twisting properties between sample and population.
11
Figure 5: The circle c describing the sample and possible circles describing the population.
12
Figure 6: Pulling up or down the threshold the number of ones
13
Figure 7: Two points x,x2 outside c are sufficient to prevent that a larger circle
15
Figure 8: Multilayer neural network architecture.
20
Figure 9: the backpropagation algorithm.
21
Figure 10: Inner and outer frontiers of a concept at two abstraction levels.
24
Figure 11: Sentry points at various abstraction levels.
25
Figure 12: Multi-level learning procedure without information loss.
26
Figure 13: Multi-level learning procedure with information loss.
27
Figure 14: PAC-meditation syntactic loop.
33
Figure 15: PAC-meditation semantic loop.
34
Figure 16: Block diagram of Systolic Meditation.
36
Figure 17: Diagram of the model.
43
Figure 18: The error function for part A.
45
Figure 19: Graph of E1 (light plot, right Y scale) and E2 (bold plot, left Y scale), during 750 learning iterations with learning rate (() set to 10-4, pfactor=0.1 and the other tuning parameters (i.e. punishment (p) and feedback weight ((A)) shown above the graph. Vertical bars indicate different training cycles.
47
Figure 20: Graph of the normalized values of (a) the antifitness for inner  borders while retraining the neural network and (b) the antifitness of the outer borders as resulted from repeated applications of the distributive property of eq. \ref{splitting} within the first level of abstraction. Testbed: philosopher dinner.
51
Figure 21: The number of output units being altered (counted for all input patterns) (graph a) and the percentage of consistent clusters in the mapping (graph b) for each iteration during the mapping process.
61



List of tables
22Table 1: Relations between symbolical and subsymbolical learning.

Table 2: Pseudocode of the inner frontier abstraction step at a level higher than 0.
37
Table 3: Pseudocode of the inner frontier reduction step at a level higher than 0.
38
Table 4: Pseudocode of the synthesis step within mininside Cm(r;L).
40
Table 5: Pseudocode of the abstraction step at level 0.
40
Table 6: Pseudocode of the reduction step at level 0.
41
Table 7: The features describing the plants.
60
Table 8: The parameters used for producing the mapping of Table 9.
61
Table 9: The clusters produced after 550 iterations for the 96(15 mapping with the parameters of Table 8. The output vectors (converted to binary from bipolar) are also shown as well as the patterns in each cluster with their original class.
62
Table 10: The 0_level inner and outer borders for the 8 classes as produced after processing the mapping in Table 8 It is reminded that  
[image: image1.wmf]15

v

v

-

=

i

i

, i>15.
63
Table 11: The relations between the 15 propositional variables and the input features describing the 5 species of eucalyptous and the 3 species of angophora
64
Table 12: Classification errors according to the repartition between the training and the test sets.
69
Table 13: Confusion matrix of the correct affectation to a specific class (f(x) is the classifier output).
69
Table 14: Confusion matrix of the incorrect affectation to a specific class.
70
Table 15: Classification errors obtained on the testing data by the SRNN and TDNN.
70
Table 16: Averaged confusion matrix obtained from TDNN and the perceptual evaluation of the sentences in the database by 7 Italian listeners (in parenthesis).
70
Table 17: Classification errors  with and without gender information.
70
Table 18: The features and propositional variables used for the social dinner case.
73
Table 19: tab: The 0_level inner and outer borders describing a successful social dinner when all 24 propositional variables are used.
73
Table 20: The propositional variables used in each experiment, the person they refer to and the number of their occurencies in the produced frontiers. Variables that were removed in the succeeding experiment are noted with an x
74
Table 21: The 0_level inner and outer borders describing a successful social dinner when 9 propositional variables are used.
74
Table 22: The 0_level inner and outer borders describing a successful social dinner when 7 propositional variables are used.
75
Table 23: The 1_level inner and outer borders describing a successful social dinner when fuzzy frontiers are used.
75


Introduction

The target of this report is to devise a theory which can support a global signal processing procedure that, receiving in input low level signals, processes them until the formation of their symbolic explanation. In an anthropomorphic fashion and in line with modern theories, we denote this procedure as a procedure that learns symbolic formulas from examples.

We think of learning activity in human brain as constituted of two phases:

1) a subsymbolical one where, like the case of a baby that starts to walk, we are just aiming at giving a correct reaction to an external stimulus,  without minding about the reasons of this reaction;

2) a symbolic one where we try to give a formal explanation of our reactions. Many reasons can be listed at the basis of this objective. The most obvious one is the fact that human beings are used to discuss and communicate about scientific topics by symbols ruled by mathematical logic, with evident benefits concerning generalization, diagnosis, inquiry and explanation of the communicated matter.

The two phases are paritetic as both indispensable. Subsymbolic attitudes [Smolensky, 1986], such as  intuition or experience, lie at the basis of practical useful actions and they are indispensable ingredients of common sense reasoning [Sun, 1994; Sun and Bookman, 1995]. However we must at least be able to describe through symbols the core of these actions and their rationale. This is in order to extend these actions to similar operational contexts and/or to submit them to criticism, improvement and translation into formal rules. This delineates an inherent hierarchy where at low levels we locate actions and at higher levels we locate their formal explanation.

In our modelization we definitely identify the learning agent with a neural network. Namely, we face a trained network and ask ourselves how to solve the complete reduction problem [Haugeland, 1978] in this instance. In most connectionist literature on this matter, the transition from lower to higher levels is conceived as being operated by an external agent who resides on the top of an analogous hierarchy. We may think of this agent as an old parent who translates the confused stammering of his pupil into a clear sentence, i.e., who states the reference links between the naive concepts raised by the network and robust symbols. In this perspective, a lot of papers discuss how to examine the parameters of  a trained network to extract rules from them.

Here, we start from the perspective that the rule extractor is not an external agent; instead it is a rule located in the mentioned hierarchy (i.e. a piece of neural network) by itself. Thus, rather than an external subroutine, we are looking for an inner loop priming symbols from synapses [Apolloni, Biella & Stafylopatis, 1999].

Let us schematize the problem in this way:

All that exists is plenty of neurons variously interconnected through plastic synapses. Plasticity means that synapses are capable of answering to external stimula by modifying their weights according to some entropic rules (animat [Brooks, 1986] with delta rule or other hebbian rules and without explicit breakdown [Bersini, 1990]). Neuron plasticity is regulated by these rules under the common aim of preserving and improving the neurons' life (cognitive target without pre-existing script [Seale, 1990]). Plasticity plays the double role of modifying the synapses' weights and, as an extreme consequence, of modifying the neural network architecture.

Thus, as a solution of the mind-brain dilemma [Vershure, 1992], in place of searching for architecture and weights that may result optimal for a special brain task, we try to solve the same search problem under the preeminent target of optimizing the implementation of the above entropic rules. In this report we give a complete procedure to accomplish this job, where the entropic rule stands in an optimal management of the information (the key feature of the procedure will be the term without information waste) under the strict constraint of consistency (that stands for do not violate the experimental evidence). 

Though the theory is rather complex, the resulting procedure will be reasonable, not conflicting  our common sense, and very easy to manage and to adapt to the special requirements of our learning problems. Indeed, starting from the very pragmatical perspective we may imagine, with reference to figure 1, to find the wanted symbolic rules directly in output of our physiological (or its artificial imitation) neural network having in input sensory data. On the opposite we can commit neural network for the sole quantization task of sensory data, like an agnostic DSP device, to supply a suitable input to first or second order logic machinery that extract rules from them.

[image: image2.wmf]Titolo:

nn-symb.eps

Autore:

fig2dev Version 3.2 Patchlevel 1

Anteprima:

L'immagine EPS non è stata salvata 

con l'anteprima inclusa in essa.

Commento:

L'immagine EPS potrà essere stampata con una stampante 

PostScript e non con 

altri tipi di stampante.


Figure 1: Balancing the data explanation.
The first option proved robust only in case of very simple rules (like AND, OR, k of n, etc.) concealed in the data. For a recent review of the related extraction methods see [Tickle et al, 1998].

Using logical tools for extracting logical rules (the second corn of our dilemma) seems to deserve more satisfaction in principle, provided the wanted rule is representable through a Boolean formula. Whatever the complexity of this formula we are able to fully define the solution algorithm. But we are very frustrated by the computational and/or sample complexity of this solution. As a matter of fact symbolic learning methods such as the family of PAC learning algorithms represent clever theoretical case studies, but very seldom are used in the everyday practice.

Without any epistemological pretence we put ourselves in an intermediate position. Starting from the very pragmatical perspective of considering learning rules from data just a data compression activity, whose success depends both on the compression rate and on the profitably usability of the learnt function, we divide the data to symbols trip (let us rename it “from synapses to rules” in a more evocative way) in a subsymbolic part and a symbolic one. The cursor in Figure 1 balances the prominence of the two parts in a rate that purely depends on the learning task at hand.

The wedding point between the two parts is constituted by symbols that are passed from the neural network to the Turing machine to be used as propositional variables of the Boolean formula that must describe data in a compressed way.
The report is structured as follows. In section 2 we give the global theoretical background concerning a general model for data interpretation and the basic models for symbolic and for subsymbolic learning. section 3 details our PAC-meditation model presenting a general procedure for implementing it, while in section 4 we discuss its subsymbolic counterpart. Section 5 is devoted to the consideration of the implementation costs of the whole procedure, and in section 6 we exhibit some numerical examples and comment on their features. Outlooks and open problems conclude the report in section 7.

The global theoretical framework

The two phases of learning are generally associated with two learning paradigms:

phase A: learning by a neural network [Rumelhart, Hinton & Williams, 1986]. We have no idea of the function to be learnt  but only a series of examples of its behaviour. We adopt a very general computing system — a neural network —  endowed with a set of atomic nonlinear functions and a huge number of parameters. With a proper choice of its layout and a suitable setting of its parameters the network computes a function, as a composition of the above atoms, that  reproduce with a good fidelity the training set. 

phase B: PAC learning a Boolean function [Valiant, 1984]. The usual paradigm assumes that we have a formal idea of how the Boolean function is shaped, i.e. we know that our target belongs to a specific class of functions. Then we must select within this class a function (call it hypothesis) that is Probably Approximately Correct, i.e. such that using this function in place of the original one we have good confidence of having only a small risk of computing badly on a new input.

Both knowledge acquisitions are inference actions based on a set of signals that represents examples (call it training set) of how our target function behaves.

Our special approach, that we call PAC meditation, extends the PAC learning paradigm to the case where specifications of the Boolean functions are not known at the beginning of the learning procedure [Apolloni, Baraghini & Palmas, 1999]. Rather, we receive them a little at a time in subsequent steps of the learning process. Thus we must have at runtime a twofold care of:

1. correctly updating current knowledge on the basis of new requisites, so that the acquisition of the final hypothesis is not compromised, and

2. Suitably rereading examples in the light of current knowledge, so that only their essential features are stored, without neither missing necessary data nor recording unuseful details.

Moreover, our procedure states a clear and efficient welding region between the two phases [Apolloni, Orovas & Palmas, 1999]. Our initial knowledge, the one achieved under an absolute ignorance of the Boolean requisites, is supplied by a neural network. The network proposes a temptative mapping between signals and elementary symbols. Its value is checked during PAC learning and a symbolic feedback is supplied to the network in order to update the former mapping. Thus we have three learning processes working in parallel and timely interleaving (see Figure 2): 

1. the subsymbolic updating of the neural network with respect to its own target (the left part of the figure), 

2. the symbolic search of PAC-meditation for obtaining a suitable function according to symbolic requisites (the left part of the figure), and
3. the global adaptivity of the whole system on the basis of symbols forwarded by the neural networks and feedbacks returned to it by the PAC-meditation.
[image: image3.wmf]Titolo:

block1.eps

Autore:

fig2dev Version 3.2 Patchlevel 1

Anteprima:

L'immagine EPS non è stata salvata 

con l'anteprima inclusa in essa.

Commento:

L'immagine EPS potrà essere stampata con una stampante 

PostScript e non con 

altri tipi di stampante.


Figure 2: The global lay out.

Classifier labels a set of either propositional variable records or feature records. In this case a neural network maps features to propositional variables. The main block contains the symbolic learning architecture. The rightmost block synthetizes the final hypothesis.

In the following we will analyze more formally the whole procedure and give a very preliminary numerical example.

1.1 Sample and population

Let us start from the very beginning by defining our model of data [Apolloni, Iannizzi & Malchiodi, 1999].

Consider the sampling mechanism M =(U,g) constituted by a uniform generator of random values Ui within (0,1) and a function g that univocally maps Ui in Xi.( (see Figure 3). It is well known [Wilks, 1962] that such g ever exists for computable distribution functions, being

g=FX-1(U)
(1)

for continuous distributions, where F is their cumulative function. Similar expressions can be stated for discrete and mixed distributions.

[image: image4.wmf]U

1

U

2

U

3

X

1

X

2

X

3

U

m

X

m


Figure 3: Sample generation.

The general target of our inference is to learn features (let us call them properties) about g. Actually, we do not assume M as the true sampling mechanism preexisting the sample. Rather, we will use M a posteriori to get an easy way of describing actual and future observations. Therefore we aim at characterizing the family of g's that explain (X1, ..., Xm) as (g(U1), ..., g(Um)), with the sole epistemological constraint that a same g must explain both present (the sample Xm) and future observations (another sample Xn with n possibly very large, that we call population). Finding a special g within the above family will depend on the observed sample. Moreover its target is the explanation of a still random set of data. Thus we will consider this family as a random function G. 

This allows us to settle the following reasoning scheme (see Figure 4):

From one side we have the world of the hypotheses about g that results in special properties on the population  (let us call them properties (). From the other side we have the world of actual observations, in which the above hypotheses result into corresponding (because g is the same) properties (— here in small letters — on the sample. We use the likelihood of the actual sample in respect of ( — a quantity that in principle can be easily computed given the hypotheses — to get the probability that G satisfies the corresponding (.

[image: image5.wmf]population

sample

PROPERTY

P

property

p

p(

p

 is  observed)

p(

P

 is true)

world of

observations

world of

hypoteses


Figure 4: Twisting properties between sample and population.

1.2 PAC-learning and sentry functions

A special issue of the above inference scheme emerges when G belongs to set C of Boolean functions f. This is the typical framework of PAC learning theory, where the parameter to be investigated is the probability that the inferred function will compute wrongly on succeeding inputs (will not explain new sampled points). 

In greater detail, the general form of the sample is (call it labelled sample):


[image: image6.wmf](

)

{

}

m

i

b

X

i

i

m

,...,

1

,

,

=

=

x


where b is a Boolean variable.

[image: image7.wmf]f

c

·

·

·

·

¨

¨

¨

¨

·

¨

x*

c

1

c

2

c

3

¨


Figure 5: The circle c describing the sample and possible circles describing the population.

 sampled points; [image: image8.wmf] symmetric difference.

If we assume that for every n and every (n a function exists in C, call it c, such that 
[image: image9.wmf](

)

{

}

n

i

X

c

X

i

i

n

,...,

1

,

)

(

,

=

=

x

, then we are interested in the measure of the symmetric difference between a f computed from (m and any such c (See Figure 5).

For instance, in Figure 5 the set X of the experimental outcomes coincides with the Cartesian plane; the learning task is to identify one particular circle c within the concept class C of all possible circles in the Cartesian plane. This might be a mathematical model for identifying the site and the emission range of a source of radiating pollution, such as electromagnetic noise, x-ray and so on, in a flat homogeneous region. In this case it is reasonable to regard circles as possible hypotheses. Thus also the set of hypotheses is represented by C. Our labelled sample might be identified with a set of randomly distributed monitoring stations. The i-th station is completely described by its position Xi,Yi in the plane, together with {0,1}-valued variable, telling us whether pollution  is detected above a given threshold by the station. We are concerned with the probability that Mr John Smith is exposed to radiation, assuming the population to have the same distribution as the set of monitoring stations. Thus, the accuracy of the hypothesis refers not directly to the portion of the misclassified region  the part which is subject to pollution but the authority declares safe on the basis of the above monitorings and vice versa  but rather to the probability that Mr Smith lives in this region.

Let us consider in advance the basic problem of inferring a confidence interval for the parameter of a Bernulli variable, as a property of the population. The function g in (2) is:


[image: image10.wmf]g

(

U

)

=

1

if

 

U

£

q

0

elsewhere

ì 

í 

î 


(2)

so that samples (B1, ..., Bm) and (B1, ..., Bn) can be read as (g(U1), ..., g(Um)) and (g(U1),...,g(Un)) respectively. For n(, to the property: 
[image: image11.wmf]q

q

~

£

of the population asample property corresponds as follows (see Figure 6):


[image: image12.wmf](

)

(

)

(

)

1

~

~

~

+

³

Ü

£

Ü

³

k

K

k

K

q

q

q

q


(3)

Here, k denotes the actual number of 1s in the sample and [image: image13.wmf]K

q

 

 the number of ones that we should observe, starting from the same underlying sample (U1, ..., Um), after substituting  with 
[image: image14.wmf]q

 in (2).

[image: image15.wmf]q

u

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

sample

population


Figure 6: Pulling up or down the threshold the number of ones

increases or decreases in both sample and population.

Thus, moving to the probabilities 


[image: image16.wmf](

)

(

)

(

)

1

~

~

~

+

³

³

£

³

³

k

K

p

p

k

K

p

q

q

q

q


(4)

Inequalities (4) characterize the cumulative distribution function of the random parameter  (0,1) representing the asymptotic frequency of ones in the population compatible with the number k of ones in the sample according to the sole symmetry constraint on G. 

From a computational point of view inequality (4) is a useful result since the first and third probabilities depend on the hypothesized  in a very simple way: all sample points with the same k have the same probability. Stated in other words: K is a sufficient statistic [Wilks, 1962].

Note that the second implication in (3) requires that we discover a number of ones greater than those really appearing in the sample in order to realize that [image: image17.wmf]q

<

q

.

We will refer to every expression similar to (3) as a twisting argument, since it allows us to exchange events on parameters for events on statistics. 
What distinguishes the former problem from the present one (learning Boolean functions) is exactly 
[image: image18.wmf]q

~

. Indeed, the target of the learning problem is to state a one side confidence interval for the measure of the symmetric difference cf. Namely we would observe our concept for a large number m of examples such that:

P(P(cf)()(1-
(5)

for suitable  and .

With reference to implications (3) the actual value of  (now representing P(cf) as we saw above) is algorithmically bounded by a set  of training examples that prevent us from shifting f in a new formula containing the former. We call a minimal set of those points outer frontier, provided some technical properties are satisfied. More formally:

Definition 1 [Apolloni & Chiaravalli, 1997]: Given a class C of Boolean functions c on a set X (X ={0,1}n for a given n), an outer sentry function on C is a total function S:CX[image: image19.wmf] 2X satisfying the following conditions:


(1) The elements of S (c) are outside c, i.e.: c S (c) =.

(sentinels are outside the sentinelled concept)


(2) let us denote c+ = c S(c)  and up(c)  = {(c’C| c'  c  and c+ c'+)}, 



if c2up(c1) then  c2 S (c1) ( .


(sentinels are inside the invading concept)

(3) no S’(S exists satisfying (1) and (2) and having the property that 



S’(c)  S(c) for every c.


(we look for a minimal set of sentinels)


(4)whenever c1 and c2 are such that c1 c2S(c2)   and c2S(c1) = 


then the restriction of S to up(c1){c2} is a sentry function on this set.


(sentinels are honest watchers)

For a given concept class C’ and a hypothesis f, let us consider the class Cf={fc|cC’}. In drawing f, the consistency constraint leaves all sampled points out of the symmetric difference cf. Moreover, for a given cf, any non trivial algorithmic expansion [image: image20.wmf]f

¸

c

 is bounded by sentinel points in Definition 1. There, we refer to concepts augmented of their sentry since, to draw consistent hypotheses, we adopt some fixed rule and, implicitly, some sentry function.

Denoting S(c) the outer frontier upon S of c, and sentry points their elements, we consider the following upper bound to the frontier cardinality:

Definition 2: We call outer detail DC of a concept class C the supremum of the cardinalities of the frontiers of its concepts with respect to all possible sentry functions. In symbols, DC = supS,c #S(c). In particular we denote by DC,H the detail of the concept class CH{cc’|cC,c’H}, that becomes DC,C when the classes of hypotheses and concepts coincide.

Example 1: 

a. the class of  circles of Figure 7 has DC = 2


b. The class 
c1= 




c2= 




c3=  , 



c4=  
where “+” denotes an element xj  belonging to ci and  “-” means an element outside ci, has DC = 2. A worst case S is so specified: S(c1)={x1,x2}; S(c2)={x1}; S (c3)={x2}; S(c4)= . However a cheaper S is: S(c1)={x3}; S(c2)={x1}; S(c3)={x2}; S(c4)=.

[image: image21.wmf]¨

¨

x

1

x

2

c


Figure 7: Two points x,x2 outside c are sufficient to prevent that a larger circle 

non containing them includes c.

Example 2: The following two examples show the relevance of the Point (4) of Def. 1 in the statement of S.


The concept class 



c1 =, 



c2 =, 



c3 =


c4 =


has DC =1, since the only feasible S is: S (c3)={x3}, S (c2)={x2}, S (c1)={x1}. Actually, S (c1)={x2, x3} is unfeasible, since the concept which is not sentinelled by this minimum boundary set is c2. On the other hand, if c2 is cancelled then {x2, x3} does not remain a minimal boundary set.



Quite different is the concept class:



c1 =, 



c2 =, 



c3 = 



c4 =,



c5 =



c6 =



c7 =


In this case S(c1) always consists of a pair of points which constitute an enlargement of c3 or c4, but this is unavoidable:  as matter of fact, the removal of S(c3) or S(c4) does not change S(c1). 

Finally, calling a statistic A:{(m}[image: image22.wmf] C strongly surjective (ssu) if for each subset Y of Xm, A is a surjection from the samples falling in it onto the intersections set of the concepts with it  
, twisting argument (3) has the  following motivation: 

For a given ssu consistent statistic f and each candidate c (consistent with Sm and any its suffix) let us consider a nested sequence  B(cf+)  = B1 B2B3 ....of subsets of X,  such that  cf S(cf)  belongs to B(cf+) and the previous element in the sequence is included in cf. Consider also the companion sequence U(cf+) of the probability measures Ui of the sets in B(cf+). 

For a sample Sm, B([image: image23.wmf]f

¸

c

+) is a random sequence (as mentioned before [image: image24.wmf]f

¸

c

 is an enlargement of cf). Thus for a fixed ,  the subset Bof probability measure  in the sequence might include [image: image25.wmf]f

¸

c

+ or not, where S([image: image26.wmf]f

¸

c

) is the witness of this inclusion. In closer detail, sample Sm contains the frontier of [image: image27.wmf]f

¸

c

;thus, if this part of the sample is included in Bwe are sure that [image: image28.wmf]f

¸

c

 Bas well.The implication chain is completed as follows: 

i) on the right, by the fact that S([image: image29.wmf]f

¸

c

) B if and only if N(#S([image: image30.wmf]f

¸

c

),where N  is the number of those from among the sampling points which fall in B, and

ii) on the left by the fact that the event:  Uc(— where Uc=p([image: image31.wmf]f

¸

c

) — is implied by the event Uc+( and the latter by [image: image32.wmf]f

¸

c

 B with the obvious notational extension: Uc+ = p([image: image33.wmf]f

¸

c

 S([image: image34.wmf]f

¸

c

))
Namely:a.

(Uc() ( (Uc+() ( (c+ ( B) ( (S(c) ( B) ( (N(#S(c))
(6)

which induces the opposite chain on probabilities, after some technicalities on the value of . b.

p(m)(Uc() ( p(m)( N(#S(c) )( p(m)( N(()
(7)

The above argumentations prove the following key lemma at the basis of any computation for confidence intervals for p(cf) 

Lemma 1: [Apolloni & Chiaravalli, 1997]: Given: 


 i)a set X and its probability measure P, 


ii)a concept class C with DC,C = 


iii)a labelled sample (m,  and 


iv)a consistent ssu function A: {(m}[image: image35.wmf] C, 

for any cC let us:

a. consider the family of  random sets {Hc=A((m)}.

b. denote by Uc the  random variable  given by the probability measure of Hcc.

c. define 
[image: image36.wmf]å

-

=

-

-

÷

÷

ø

ö

ç

ç

è

æ

-

=

+

-

1

0

)

1

(

1

)

1

,

(

m

a

a

a

m

m

i

i

m

i

i

m

m

I


Then, for each <1

I(1,m) ( p(m)(Uc ( ) ( I(,m-+1)
(8)

By inverting inequality (8) we obtain the following main result that fixes an upper bound to the number of examples needed to learn a class C when no hypothesis is available on the probability distribution on X (distribution free case).

Corollary 1: Let C be any concept class with DC,C = rFor every 0<,<1 , in case


[image: image37.wmf]þ

ý

ü

î

í

ì

-

³

e

d

e

m

)

1

(

5

.

5

,

1

log

2

max

r


every consistent strongly surjective function A: {(m}[image: image38.wmf]C is a learning algorithmwith accuracy parameters and  for C.

1.3 Learning with neural networks
Learning on neural network is a subsymbolical issue of the above procedure. In such a frame, learning algorithms on neural networks look like a very robust fitting technique, not far different from the usual well known least square interpolation algorithms, except that the former ones do not find out only some parameters but the whole shape of the fitting curve. Moreover, within the generally wide family of feasible curves, we select one which possibly would be selected by the human brain, provided the analogy between brain and neural network is true.The success of the learning task is appreciated by the generalization capability of the so achieved routine, i.e. by its agreement with the actual function we want to learn, outside the set of the fitted points. To pursue that task, neural networks are endowed with:

- 
a lot of parameters dipped in a parallel highly interconnected structure of non-linear processing elements which is able to compute any function, for a proper setting of those parameters. 

- 
very robust algorithms for the updating of the above parameters, which perform generally well, if they are carefully suited to the case.

As it is well known, learning in neural networks is accomplished by tuning the parameters of the net [Rumelhart, Hinton & Williams, 1986]. Almost all the successful applications of supervised learning algorithms are ruled by special features of the back-propagation algorithm. In particular in our application, we specialize the structure of the neural net as the multilayer directed graph of Figure 8, where the nodes are neurons and the arcs their mutual connections, and we use the error back-propagation algorithm to suitably modify the weights of those connections according to the training set. In that graph we distinguish an input and an output level where the example pairs are located, and a series of hidden nodes layers which state a rich and complex set of relations between the former levels. Formally we define a neural net by the quadruplet <n, N, t, W> where:
n
is the total number of neurons;


N
is the set {i1,...,in} of the names of the neurons;


t
is the vector (t1,...,tn) of  the thresholds of the neurons;


W
is the matrix |wij ; i=1,..,n; j=1,..,n | of the weights of the connections.

Thanks to simple reduction rules, we can avoid considering the thresholds vector in the rest of paper at the cost of adding a dummy neuron with state always 1 and connections to the other nodes equal to their thresholds. So we will assume zero all the thresholds in the resulting network.

To each neuron i a state si  ( is associated whose value is computed by the activation function fi:


fi : (nn  (n   ( 

meaning with ( a floating point number of limited size by abuse of notation.

In particular we compute the states s of the neurons in parallel within the same layer and sequentially through the layers by two kinds of activation functions:


[image: image39.wmf]j

e

s

W

f

j

net

1

1

)

,

(

m

+

=

          sigmoidal activation
(9)


[image: image40.wmf]j

j

j

e

e

e

s

W

f

j

net

net

net

)

,

(

m

m

m

+

=

-

   hyperbolic tangent activation
(10)

where 
[image: image41.wmf]å

=

k

k

jk

j

s

w

s

W

)

,

(

net

and is a slope parameter.

For each example of the training set, the algorithm alternates two steps (see Figure 9):

- forward propagation step, where the input of the example, incoming at the first layer,  gives rise to the updating of all the states of the net according to the above activation functions;

- backward propagation step, where a suitable function E of the output of the net, updated according to the previous step, produces in a reverse sequence, layer by layer, the updating of all the weights of the connections, according to a gradient descent method for minimizing E.


[image: image42.wmf]Output

Hidden

Hidden

Input

Layer  L

Layer  L-1

Layer  1

Layer  2

OUTPUT     PATTERN

INPUT     PATTERN


Figure 8: Multilayer neural network architecture.
Actually, the minimization of E might be improved if the update of the weights happens periodically, once the proposed updatings have been cumulated during the processing of small set of examples (possibly the whole training set), whose cardinality we call batch size.

Starting from the statements (see Figure 9):

E=g(si: i((), being ( the set of the output units

wjk = Ewjk         (

the analytical deduction of the updating rule is well known [Rumelhart et al, 1986], here we recall the sole conclusive equations:

wjk=- j sk
(11)


[image: image43.wmf]j

j

j

j

s

E

f

¶

¶

¢

=

/

)

(net

d

  if j is an output neuron
(12)


[image: image44.wmf]å

¢

=

i

ij

i

j

j

j

w

f

d

d

)

(net

 if j is a hidden neuron
(13)

These steps alternate along the learning cycles until the error is lowered enough, where a cycle means the processing of the whole set of examples.

[image: image45.wmf]L

L-1

L-2

Forward

Backward

input

E=g(

s

i

;i

ÎL

)

d

i

L

=

¶

E/

¶

net

i

=

¶

E

¶

/

¶

s

i

¶

s

i

/

net

i

D

w

ij

L-1

 = 

h

d

i

L-1

s

j

L-2

D

w

ij

L

 = 

h

d

i

L

s

j

L-1

w

i,j

L

w

i,j

L-1

d

i

L-1

=

�

k

i

n

L

d

k

i

L

w

k

i

,i

L

¶

s

i

/

¶

net

i


Figure 9: the backpropagation algorithm.

The calculation of the gradient is simple and well tailored for a neural network, and this contributed to the wide spreading of the method. 

In our approach we plan to train a neural network both in unsupervised and in supervised mode. In the first one the network tries to minimize an error E that is a function of the sole output. In the second mode the network is devoted to reproduce an output target  supplied by a supervisor as a function of the input. In this case the error function is a tool to drive the network in the parameter space to achieve the target. Therefore we can consider the training of a network as a special instance of PAC learning after the translation rules shown in Table 1 [Apolloni & Mauri, 1990].

The set of examples is now denoted by training set. The class of concepts is unknown, while the class of hypotheses is constituted by the set of all configurations actually reachable by the network after training. A consistent hypothesis is the trained network, possibly in an extended notion of consistency as the minimization of the error function per se. However, besides our original aims, sometimes we restrict us to quasi consistent hypotheses, in the sense that sometime, after a long learning session we accept as a result even a neural network that answers wrongly on some examples.


[image: image46.wmf]LEARNING

SYMBOLIC

SUBSYMBOLIC

LABELED SAMPLE

TRAINING SET

CLASS OF HYPOTHESES

FAMILY  OF NETS

OF GIVEN LAY-OUT

SINGLING-OUT OF  THE

HYPOTHESIS

TRAINING OF THE NET

ACHIEVEMENT OF THE

PRECISION TARGET

GENERALIZATION


Table 1: Relations between symbolical and subsymbolical learning.

Generally we are not able to compute a confidence interval for the probability of error in this framework. Rather we estimate this probability using another set of examples (the test set) and accounting the frequency of errors on it. This frequency is generally read as the generalization capability of the network.

1.4 A trade off between approximation and generalization.

Both in symbolic and in subsymbolic learning, finding a consistent hypothesis may be a difficult task. Moreover, trying to find a consistent hypothesis in a very complex (high detail) class could result in a cheating job, generally known as overtraining. Namely, we charge on the structure of the hypothesis some raggedness that is actually due to the example random noise, thus trying to learn what is unlearnable by definition. 

This kind of considerations are at the basis of the non linear Support Vector Machines [Vapnik, 1995]. From an operational point of view the problem is the following:

The confidence of a given hypothesis decreases with two factors: the number of examples the hypothesis misclassifies and the complexity of the class the hypothesis belongs to. What is the right balance between these two factors?

A useful tool for solving this problem is the following lemma stating that detail and an analogous upperbound on the number of misclassifed points affect in the same way (linearly add indeed) the confidence of our hypothesis.

Lemma 2: [Apolloni & Malchiodi, 1999]: Given a concept class C on X, a hypotheses class H with DH,C = ( and a labelled sample (m, let At be an approximate algorithm which misclassifies at most t points of total probability at most (. For each 0 <  < 1/2, in case m ( max { 2/ log(1/), 5.5((+t-1)/ } if A is a consistent ssu function from {(m}[image: image47.wmf] H, then A produces a statistic f= A ((m) such that p( p(cf)(max{(,} )(1-.

This lemma represents a theoretical  background for the problem of finding a suitable representation of a training set, i.e. of its description through a resulting formula simple to understand  and capable of predicting and explaining  extensions of this set that we get when we continue to observe the same phenomenon. This is mainly the matter of the new section. 

In addition we will further simplify our hypotheses using fuzzy set notations. Namely, in some cases we will assume misclassified  examples to belong to the fuzzy frontier of a concept. Thus the above domain cf  is affected  by an unsharp membership function to the attribute “wrong”. Actually the fuzziness notion looks very natural in our context where we locate the contour of the final hypothesis in a  gap between two learnt regions (the above mentioned maximal and minimal hypotheses).

2 PAC-meditation

The jump from examples to concepts, for instance from fire observations to the settlement of the thermodynamics laws, might be very long, taking a complex sequence of hierarchical steps, like human kind did over the course of the centuries. In view of capturing some features of this abstraction process within the above guidelines, we consider the following multi-level procedure for PAC learning a class of Boolean formulas:

 at the first level we have two sets of positive (g(x)=1) 
 and negative (g(x)=0) examples. From subsets of equally labelled examples we compute partial consistent hypotheses. Namely each hypothesis is consistent with a part of the positive examples and all negative examples, or vice-versa. The criterion is that the union of the hypotheses coming from positive subsets and the intersection of the other ones form two inner and outer frontiers, respectively, delimiting the interstice where the contours of suitable consistent hypotheses are found (see Figure 10).

 at further abstraction levels the partial consistent hypotheses of the immediately preceding level play the role of labelled examples, where the sampled data are substituted by formulas and the positive and negative labels are substituted by a flag which denotes whether these formulas belong to the inner or outer frontier. An actual benefit comes from these level jumps in case of suitable definition of the classes of formulas in the new frontiers. These classes induce new links between the frontier formulas, with the twofold effect of reducing both the degrees of freedom of the final class of hypothesis, thus lowering the sample complexity of the learning problem, and narrowing the interstice between the frontiers, thus simplifying the search for the final consistent hypothesis.

We do not need to state a priori the number of levels. Possibly, a previously adequate formalization of our concept is updated according to new syntactic or epistemic exigencies, calling for new learning levels.

[image: image48.wmf]
Figure 10: Inner and outer frontiers of a concept at two abstraction levels.

Bold lines describe higher level formulas. Inner frontiers are delimited by the union of formulas bounded by positive examples, outer frontiers by the intersection of  formulas bounded by negative examples.

This paradigm, which we call PAC meditation, plays its own role in two topics of learning theory:

- it puts a bridge between inductive and deductive learning. The atomic formulas at their first level are inductively learnt from examples [Solomonoff, 1964], then they are managed through special deductive tools. This constitutes a different way of spreading the computational effort for finding a consistent hypothesis. If the atomic formulas are subsymbolical hypotheses, for instance computed by a neural network, we get interesting insights for managing hybrid (symbolical-subsymbolical) systems [Sun & Bookman, 1995]. By the way, note that the abstraction process at the basis of PAC meditation is quite dual of the abstraction branching familiar to AI community [Knoblock, 1993].

- it provides a special featured boosting of hypotheses, which we call syntactical, in comparison with other usual methods [Schapire, 1990] which we could call statistical. The basic idea of the boosting is to start from weak hypotheses suitable only in different regions of the instance space and to numerically combine them to produce a strong hypothesis. Typical merging algorithms are majority voting [Freund, 1995] or weighted summing [Freund & Shapire, 1996], with weights based on the relative performance of the single hypotheses, and so on. All these procedures require that the weak hypotheses belong to the same class as the stronger one or are closely related to it. In our approach we take particular advantage of the fact that the structural complexity of the hypotheses grows with the level, denoting an incremental embedding of new symbolic knowledge. Indeed, PAC meditation is based on a different way of understanding the learning mechanism and of computing learning accuracy parameters, which stems from the notion of sentry function. Here we provide a natural extension of this function to a functional space where the sentinelling points are concepts of a given structural complexity and the hypotheses are functions of these points of higher structural complexity.

For instance we recognize in the points A and B of Figure 11 the sentry points distinguishing feature of barring some contraction of the ellipsis  still containing these points. At higher level the same role is played by the ellipses  and  with respect to  and, furthermore by  and  with respect to .

[image: image49.wmf]A

B

C

D

E

F

a

b

g

d

e

z


Figure 11: Sentry points at various abstraction levels.

In this framework a PAC meditation algorithm defines the rules for pushing labelled examples from one to the next structural complexity level, while its sample complexity evaluation must manage the book-keeping of the pivots during these jumps. In this sense we develop the key notion of learning procedures without information loss. The following simple example can illustrate in ( this notion, summing up, at the same time, the general idea of our hierarchical learning model:

The scientific community is engaged in discovering the thermal operational range of a given chip. It is well known that the chip works well at twenty centigrade degrees. Thus, assuming this value as a threshold, some people work toward higher, and others toward lower temperatures. The basic learning rule is: given a suitable set of tested temperatures look at the highest, for the researchers working over the threshold, or, otherwise, at the lowest temperature.

From time to time, groups of high temperature scientists decide to update the found boundaries by consulting the results of their colleagues; the scientists of low temperatures do the same. Therefore after a meeting groups A and B realize, without more experiments, that the correct hypothesis is LA, and groups C and D that the correct hypothesis is UD (see Figure 12). Note that no one speaks about the global hypothesis concerning the thermal range. This allows us to learn without information waste the hypothesis concerning this concept, since, when the international committee decides it has enough results, uses hypotheses LA and UD, whose frontiers are points x and y respectively, precisely the points constituting the frontier of the learned hypothesis.

[image: image50.wmf]A

A

B

B

C

C

D

D

D

L

A

L

B

U

C

U

D

threshold

X

Y


Figure 12: Multi-level learning procedure without information loss.

On the contrary, if the scientist groups decide to discover the global range each on its own, (see Figure 13) even if they plan to merge their results, each group has to store two boundary points, so that at the end the final committee has to waste two boundary points.

The points' waste comes from a bad experiments' management, i.e. from an inefficient frontiers' design, that is a loser in two respects: 

1) computational resources: doubled memory and more computation are required. This is a minor point, however, to our considerations. 

2) sample complexity: a sample larger than in the first inference strategy  is expected to be necessary to achieve the same estimation accuracy. For fixed amount  of experiments per group, indeed, each group focuses on a single parameter in the first inference strategy and on two parameters in the second alternative, say devoting /2 experiments to each.

[image: image51.wmf]A

A

B

B

C

C

D

D

D

threshold

X

Y

I

A

I

B

I

C

I

D


Figure 13: Multi-level learning procedure with information loss.

For each parameter the accuracy is generally higher (except in the case of very rudimentary experiment strategies, like random sampling of temperatures) when the estimate is taken from all  experiments rather than from the comparison of two estimates based on /2 experiments each.

By similar arguments, we see in Figure 11 that at least one of the four points ABCD is inessential to sentinel , and  to sentinel  as well. Thus, a general aim of this report is to device a meditation process that does not incur in this drawback. Namely, at whatever abstraction level we consider our target formula, the sentry points that constraint its shape are the same. In a sense that will be clearer when we deepen the notion of sentry points, we do not want be involved in a tricky theory that either misses some of them  (thus making learning unfeasible), or enlarges their number (introducing unnecessary complications).

In the paper we will give a general procedure for learning class of concepts belonging to a polynomial hierarchy of formulas [Wegener, 1987]. The procedure might have two outputs: either inner and outer frontiers or directly a single hypothesis.  We prove that the procedure works without information loss and requires only polynomial time to generate the former output. But the search for a special hypothesis satisfying the polynomial hierarchy requisites results in a NP-easy problem.

2.1 Theoretical background

2.1.1 Frontiers and atomic formulas

A key point in our approach is represented by the frontier of our unknown concept. Let us start by extending the notion of sentry functions to inner sentry functions, giving of it a totally symmetric definition of outer ones. Namely

Definition 3: Given a concept class Gn on Xn: an  inner sentry function on Gn is a total function  s : Gn Xn[image: image52.wmf] 2Xn satisfying the following conditions:

(1)  the elements of s(g) are inside g. This means that, for every g in the domain of s,  



g s(g) =s(g)

(2)  let us denote g-= g  s(g) and dw(g) = {(g' Gn | g g ' and g'- g-)}, 


if g2 dw(g1) then  [image: image53.wmf]g

2

s(g1) ( 

(3)  no s’ ( s exists satisfying (1) and (2) and having the property that s’(g)  s(g) for 
each g.

(4)  whenever g1 and g2 are such that  g2-  g1,  g1 g2 (   and [image: image54.wmf]g

2 s(g1) = 


then the restriction of  s  to dw(g1){g2} is a sentry function on dw(g1){g2}.

Definition 4: We call inner detail dGn of a concept class Gn the maximum of the cardinalities of the frontiers of its concepts with respect to all possible sentry functions. In symbols

[image: image55.wmf]d

G

n

= 

max

s

, g

Î

G

n

 

#

s

(g)

  ;
Example 3: Let us consider the class B2 of Boolean forms on {0,1}2:


C= {0,1,x1,x2,x1x2}.

The related supports are:




00
01
10
11


g1=0
 
 -
 -
 -
 -


g2=v1v2
 -
 -
 -
+


g3=v1

 -
 -
+
+


g4=v2

 -
+
 -
+


g5=1

+
+
+
+


Inner and outer sentry functions for G2 are:


s(g1)=; s(g2)={11}, s(g3)={10}, s(g4)={01}, s(g5)={00} 


S(g1)={11}; S(g2)={01,10}, S(g3)={01}, S(g4)={10}, S(g5)=

It is easy to check that, from among the possible sentry functions, no frontier needs more than two sentry points, so that dG2= DG2= 2. An example of inner sentry function whose frontier cardinality equals the inner detail is the following:


s(g1)=; s(g2)={11}, s(g3)={10}, s(g4)={01}, s(g5)={01,10}

The atoms of our meditation chain are constituted by monomials and clauses. They look an appropriate choice, since we know that every Boolean formula can be represented either by the union of some monomials or by the intersection of some clauses. 

It is quite easy to write down the sole inner sentry point of a monomial and the sole outer sentry point of a clause. This is true both for monotone and for non monotone formulas. In fact, in the first case the following results hold:

Lemma 3: Given the space Xn  and the set of n propositional variables V = {v1,...,vn}, let us call Mn and Cn the classes of monotone monomials (conjunctions of affirmed variables) and monotone clauses (disjunction of affirmed variables), respectively, on Xn. Denoting set(g) the set {vi} of all the propositional variables occurring in the formula g.


i)  for each m Mn , the sole s(m) is constituted by a singleton {} defined as follows:





          [image: image56.wmf]for each i 

Î

{1,...,n}, 

n

i

 = 

1      if 

v

i

Î

set(

m

)

0          otherwise



ii) for each c Cn , the sole S(c) is constituted by a singleton  defined as follows:





          [image: image57.wmf]for each i 

Î

{1,...,n}, 

w

i

 = 

0     if 

v

i

Î

set(

c

)

1        otherwise


In the general case of non monotone formulas, it is convenient to consider points in the wider space of the incomplete Boolean assignments.

Definition 5: Given the space Xn ={0,1}n, let us consider the incomplete Boolean assignments space Zn={0,1,*}n mapping into 2Xn such that to each zZn corresponds the set (z) of points xXn with  xi = zi  if zi ( *, xi = either 0 or 1 if zi = *.

Lemma 4: Given the space Xn  and the set of n propositional variables V = {v1,...,vn}, a literal uj being an affirmed or a negated propositional variable, let us consider the classes Mn of monomials (conjunction of literals) and Cn of clauses (disjunction of literals) on Xn. Consider the functions:


 - t : Mn Xn[image: image58.wmf] Zn   such that:  for each m Mn , t(m) is the point  defined as follows:





          [image: image59.wmf]for each i 

Î

{1,...,n}, 

n

i

 =

1  if 

v

i

Î

set(

m

)

0  if 

v

i

Î

set(

m

)

*       otherwise

 



- T : Cn Xn[image: image60.wmf]Zn   such that:  for each c Cn , T(c) is the point  defined as follows:





          [image: image61.wmf]for each i 

Î

{1,...,n}, 

w

i

 =

0  if 

v

i

Î

set(

c

)

1  if 

v

i

Î

set(

c

)

*      otherwise

 


then (t) is an inner sentry function s for Mn and (T) is an outer sentry function S for Cn.

Frontiers and hyperformulas

One of the most relevant philosophical results of PAC learning theory is that, given a class G and a correct representation of its concepts, for any sampled set of examples, any element of the class which results consistent with the examples is equivalent to any other in  terms of distribution free confidence in having a good hypothesis. On the other hand, selecting an efficient representation is a crucial step for reducing in probability both the loss function and the computational effort to get a hypothesis [Apolloni & Gentile, 1998; Kearns & Vazirani, 1994]. 

Thus, for a fixed set of examples, let us consider the envelope of the largest (in a topological sense in any metric space) consistent hypotheses and the envelope of the smallest consistent hypotheses. They bound an interstice where the contour of our actual hypothesis can fluctuate.

In our approach an improvement of the statistical efficiency of the representation is induced by a reduction of the size of the above region. This is obtained by stating stronger relations between the points of the sample space — and then between the propositional variables of the concept — which gnaw the border of the interstice. Stated from another perspective, the above region is stemmed by two companion envelopes of outer and inner frontiers determined by the examples. Adding stronger relations in the sample space reduces both sentry points of the frontiers, thus increasing the confidence of finding these points in our examples, and the interstice between the frontiers, making therefore the solution of the consistency problem easier.

Hence, we can devise a progressive refinement of our hypothesis about an experimented phenomenon. This refinement, like in human meditation, starting from immediate partial hypotheses on the examples, produces a pair of preliminary maximal and minimal hypotheses which respectively contains and is contained in the goal concept. Then the process continues exploiting new formal information about the concept with the effect of generating new pairs of extremal hypotheses containing and contained in, respectively, the previous pairs. At the end, PAC meditation draws the final consistent hypothesis. 

In the following we assume that our concepts belong to the class of monotone formulas, i.e. of Boolean formulas where only affirmed propositional variables appear. This will not result in a restriction for the goal of our learning procedure, as it will be shown in section 4. On this assumption, canonical monomials are a more rich representation of positive points in that:

 they represent a set of points, related with the positive examples that still must be contained in the hypothesis.

 they constitute a more concise representation of the positive training set. In fact, if a monomial contains another one, we can skip the latter from the set.

 their union constitute a representation of a hypothesis on g. Better, it represents the minimal hypothesis on g.

Similar properties hold for the canonical clauses, whose intersection now represent the maximal hypothesis consistent with g.

These duties derive from the fact that they represent properties that we infer from the points after the monotonicity assumption. And these properties are pivoted on the fact that positive examples are inner sentries for these monomials, and negative examples for the clauses. Now, to render this prerogative proof against any other representation through monomials, i.e. any other consistent association of monomials to inner points, we must fix these examples as sentry points of the largest expansions of canonical monomials (narrowing of canonical clauses) that result still consistent with negative (positive) points. This is the bulk of our abstraction process: we pass from a lower to a higher level representation of partial hypotheses in such a way that new sentry points are a subset of older ones (some points possibly becoming useless because of the expansion).

To implement further abstraction jumps we use a compositional rule. Of course the inner frontier maintains its sentinelling functionality if we consider groups of monomial and express the union of all monomials as a union of these groups. This operation has two distinguishing effects:

1 Level transitions 

Consider the simple union of the two monomials [image: image62.wmf]v

i

v

j

v

k

Ú

v

l

v

m

v

n

v

r

 and apply it the distributive property

[image: image63.wmf]v

i

v

j

v

k

Ú

v

l

v

m

v

n

v

r

 =(

v

i

Ú

v

l

v

m

)

Ù

(

v

i

Ú

v

n

v

r

)

Ù

(

v

j

v

k

Ú

v

l

v

rm

)

Ù

(

v

j

v

k

Ú

v

n

v

r

)


We obtain a new monomial where literals are constituted by clauses and in own turn literals are substituted by monomials. Call it a hypermonomial consisting on the intersection of hyperclauses.

Let us generalize the operation, keeping groups of at most k1 monomials and splitting them in such a way that each hyperclause contains at most k2 terms. This operation represents an abstraction jump, and at this new abstraction level the frontier is constituted by the union of such complex formulas. Bounds on k’s stand for requisites of conciseness on the formula description, i.e. for a compression of our knowledge, that is a good starting point for any learning algorithm. 

A similar operation can be done on outer frontier considering intersection of clauses.

By  iterating this procedure we obtain two universal families of borders containing in its interstice, since the first abstraction, any Boolean formula for a proper choice of k’s. These borders are polynomially enumerable, however, if we bound at any level by a constant the number of formulas that can be connected to build formulas of the next level.  In the meanwhile, checking consistency of an element of these sets is a non polynomial problem. This will be the framework of our learning procedure.

Definition 6: For t ( 0, let us denote t=t-1=  if t is odd and (0,  otherwise. Set LN and =2L, then consider the family of hyper_L_monomials  Gn;k1,k2,...,kwhose elements g can be written as follows:



[image: image64.wmf])

,

,

,

(

v

1

2

1

1

1

1

2

1

1

1

2

2

1

0

+

¢

=

+

¢

=

¢

=

+

=

n

n

n

n

j

j

j

g

k

j

q

k

j

k

j

K

K

U

U

U

, with 
[image: image65.wmf]i

i

k

k

£

¢

 for each i((, 
[image: image66.wmf]N

Î

¢

n

k

 and suitable q

and the family of hyper_L_clauses Gn;k1,k2,...,kwhose elements g can be written as follows:



[image: image67.wmf])

,

,

,

(

v

1

0

1

1

1

1

0

1

1

0

0

n

n

n

n

j

j

j

g

k

j

q

k

j

k

j

K

K

U

U

U

¢

=

¢

=

¢

=

=

, with 
[image: image68.wmf]i

i

k

k

£

¢

 for each i((, 
[image: image69.wmf]N

Î

¢

n

k

 and suitable q

The first connective is the head connective, the formulas connected by it are called hyperliterals at L level. Let us call Boolean polynomial hierarchy the couple of families.


We call mininside Cm(r;L) and maxinside CM(r;L) the classes of formulas given by the disjunction of at most r hyper_L_monomials and the conjunction of at most r hyper_L_clauses consistent with frontiers of level L.

A suitable feature of the introduced hierarchy is that we pass from one level to the next adding a pair of operations of the “” kind for hypermonomials and  “” for hyperclauses. To manage these key operations easily we adopt the following notation.

NOTATION: A hypermonomial m is represented both as product of hyperliterals u1u2......uk for some k, and as conjunction c1c2......ck of hyperclauses to better make the involved Boolean connectives explicit. In turn, a hyperclause c is represented both as sum of hyperliterals u1+u2+......+uk for some k, and as disjunction  m1m2......mk  of hypermonomials. Indeed, only operations consisting of single conjunction of disjunction of hyperliterals or vice versa will be relevant for dealing with the algorithm in the next section. 


Hyper_0_monomial is a usual monomial; hyper_0_clause is a usual clause.


In applying the distributive property, we will split a hypermonomial mi in a set of hypermonomials {mij} whose hyperliterals partition set(mi) — thus [image: image70.wmf]Ù

j

m

i

j

 =

m

i

 — and a hyperclause ci in a set {cij}, under similar assumptions.

The addition of new indices in the subscripts of G and G gives rise to more complex classes in the above hierarchy. On the other hand, leaving unbounded the arity of the head connective makes the different levels of this hierarchy collapse to equally unbounded level one, which represents the class of CNF or DNF respectively. 

Actually, going towards higher levels and lowering the values of the indices k in the subscripts gain specialization of the class of formulas. We might refer to a mental process where, starting from labelled assignment we draw a set of boundary properties in terms of concise canonical Boolean forms consistent with the assignments. Then we give names to these properties and search for a canonical combination of them to get more concise higher level properties, and so on. This more structured description of the class of formulas requires a deeper a-priori knowledge on the phenomenon we are trying to learn about. We might imagine many constraints other than indices k to embed this knowledge; the procedure we present, however, can constitute a suitable starting point in this direction.

Thus, the generical iteration of our meditation process can be described through the loop in Figure 14, that can read as iteratedly renewal of the language by which we describe properties of the observed points (see Figure 15).

[image: image71.wmf]Abstraction

Hypotheses 

composition

Expansion 

of 

the 

compositions


Figure 14: PAC-meditation syntactic loop.

[image: image72.wmf]Abstraction

Set 

of 

propositions

Symbolic 

alphabet


Figure 15: PAC-meditation semantic loop.

2. Reshaping of the frontiers

The peculiarity of this process is that hyperpoints play the double role of sentinels from one side, and atomic formulas from the other whose union constitute per se a hypothesis on the goal concept. In this sense we speak of this union as of a border. However there exists a clear difference between the two hyperpoint functionalities. Let us consider the inner border, jumping from L to L+1 level we rewrite the union of hyperpoints through the union of k-plets of them. It is a non trivial theorem to state that the original k L_hyperpoints  constitute a frontier of this new formula. This will be shown in the next section in relation to our special learning algorithm. For level 0 an 1 we can already state the following.

Lemma 5: i) For any monotone concept g in the class of monotone formulas the inner sentry is the union of the inner sentry points of the monomials of its representation through non mutually including monotone monomials.

ii) For any monotone concept  g in the class of monotone formulas the outer sentry is the union of the outer sentry points of the clauses of its representation through non mutually including monotone clauses.

Having considered the above union, we can examine the case of extending (enlarging) the single atomic formulas in a consistent way. The following lemma is related with this case:

Lemma 6: i) The class of monomials consistent with the ith positive example and all negative examples of any set E, such that no other monomial exists with same properties including it (let us call it maximal monomial), is innerly sentinelled by the positive example.

ii) The class of clauses consistent with the ith negative example and all positive examples of any set E, such that no other exists with the same properties and is included by it (let us call it minimal clause), is outerly sentinelled by the negative example.

iii) The class of union of maximal monomials of any set E is innerly sentinelled by the union of the inner sentries of these monomials.

iv) The class of union of minimal clauses of any set E is outerly sentinelled by the union of the outer sentries of these monomials.

Now, to preserve the sentinelling functionality we stretch again, as done for 0 level, our hypermonomials enlarging them as long as consistency is not violated (no any negative point falls into). This enlargement may happen since we change the class of formulas the atoms belong to, allowing a fragmentation of previous (L level) literals: we pass from the extreme case with k1=k2=1 where new formulas coincide with the previous ones, to the other extreme with unbounded k's, where inner border goes to coincide with the other border. For any intermediate choice of k's, a possible consequence is that some sentinelling points (0 in the first extreme, either all positive or all negative in the second) become useless. This means that, starting from total ignorance where all monomials coming from observed positive examples are used to sentinel our unknown formula (excepted monomials included in others), injection of knowledge (constraints on k'‚s) allows us to reduce the number of sentinels. Nevertheless a persistency theorem on the information needed at the various level to learn g can be proved as follows:

Definition 7: Given a concept class Gn on Xn, we say that Gn is learnable without information waste up to level L from its borders if there exists an algorithm that for any examples set E ={E+, E-} produces consistent hypotheses Gn whose frontiers at level L are sentinelled by a same subset of E, whatever the level i  L of the abstraction may be.

Theorem 1: Given a standard meditation chain, if the classes mininside Cm(r;L) or maxinside CM(r;L) are learnable at level L, then they are learnable without information waste up to this level.

These results say that at any abstraction level we can rely on hypermonomials and hyperclauses as frontiers of our formula at this abstraction level and that the union of the sentinels of these frontiers is the same at each abstraction level and coincides with the sentry points when no any abstraction is done. This happens provided that at any level we stretch our frontiers, compatibly with their level specification, as long as consistency is not violated. Note that it is exactly the existence of constraints on k1 and k2 that allows this stretching and then both a narrowing of the gap between inner and outer frontiers and the avoidance of information waste.

2.2 The systolic algorithm

The block diagram is shown in Figure 16. It essentially consists of the iterative activation of two steps, each iteration corresponding to an abstraction jump.

Starting from these borders as 0-level of the chain and from a set E+ of positive points and E- of negative points in Xn as inner and outer frontiers s(0) and S(0), respectively, at any level L the two steps act as follows, with some caution at the first one:

1° Abstraction : 

Abstraction is obtained by partial distribution of the set_union and set_intersection operations. Namely, we consider temporary frontiers s’(L) and S’(L). To pass to s(L) from  s’(L-1), with L>0: 1) we consider each group of k2 (bound on the second connective of level L) hyper_L-1_monomials of s(L-1); 2) we split each hyper_L-1_monomial mi

[image: image73.wmf]Get a labelled sample

abstraction

reduction

level test

stop

synthesis


Figure 16: Block diagram of Systolic Meditation.

within the group in the intersection of mij's, with the mentioned notation, such that applying the distributive rule to the mi's union we meet the bound k1 on the arity of the first connective; 3) we simplify the obtained hypermonomial by removing either the clauses containing other joined clauses or the entire formula if it is included in another hypermonomial of s’(L).

A similar procedure is adopted for the hyperclauses.

Note that we might state many different inner and outer frontiers. To assure their attitude of sentry function, we must consider all the possible groupings of the lower level frontier elements, since each one can induce a narrowing of the interstice after the reduction step. On the other hand, it is enough to consider only one partition of the hyperliterals since different partitions induce non mutually including domains even after reduction, as will be shown later.

Therefore, if we denote by prime_representation(g) the result of simplifying g, then, for L>0 this step can be coded for the inner frontier by the subroutine of Table 2.

2° Reduction : get s(L) from  s’(L) enlarging the new inner frontier or S(L) from S’(L) narrowing the new outer frontier according to the following rules:


a. Given  a hyper_L_monomial  c1...cj-1vcjcj+1....ck, 

Abstraction_i(s(L-1),S(L-1), s’(L), S’(L),k1,k2)

BEGIN:

     s(L)= 

                    FOR_ALL  Ak2={m1,...,mk2}with mi s(L-1)

                    split each mi  Ak2 in {mij} such that 
[image: image74.wmf]}

max{

}

{

#

1

1

2

k

k

m

k

i

i

j

£

=

Õ

=

 

                    [image: image75.wmf]g

=

Ç

i=1

k

m

i

j

È

j

=1

k

2


                   g = prime_representation(g)

      s’(L) = s’(L){g}

      S’(L)= S(L-1)

END

Table 2: Pseudocode of the inner frontier abstraction step at a level higher than 0.

max(k ( k1) means the maximum product k of cardinalities obtained by incremental splitting of hyperliterals which does not exceed k1. An analogous routine Abstraction_o works on the outer frontier

 denoting by 
[image: image76.wmf]j

c

any enlargement of cj obtained by either reducing, but non vanishing, the number of hyperliterals of its terms (hyper_L-1_monomials) or making 
[image: image77.wmf]j

c

 directly coinciding with Xn,  

if the difference between  c1...cj-1
[image: image78.wmf]j

c

cj+1....ck and the intersection of all the hyper_L_clauses of S(L) equals , i.e. if no negative region is included in                 c1...cj-1
[image: image79.wmf]j

c

cj+1....ck, 

 then substitute c1...cj-1cjcj+1....ck with c1...cj-1
[image: image80.wmf]j

c

cj+1...ck.


b.Given a hyper_L_clause m1mi-1mimi+1mh, 

 denoting 
[image: image81.wmf]i

m

 an analogous contraction of mi and mi the negation of mi (mi(x)=1 if and only if mi(x)=0), 

if the difference between the union of all the hyper_L_monomials of s(L) and m1mi-1
[image: image82.wmf]i

m

mi+1mh equals , i.e. if no positive region is included in                  m1mi-1
[image: image83.wmf]i

m

mi+1mh, 

then substitute m1mi-1mimi+1mh with 






m1mi-1
[image: image84.wmf]i

m

mi+1mh.


c. after mentioned substitutions rewrite obtained hypermonomials and hyperclauses in  terms of monomials and clauses on suitable hyperliterals.

See Table 3 for algorithmic details 3 for L>0.

Remark: 1) enlargements and restrictions are checked by removing one hyperliteral at a time in any order. The results can be different, but the sentry capability of the resulting frontiers is preserved. This can be proved by checking that any two different frontiers coming from a different processing sequence of the hyperliterals do not include one each other. Thus there is no frontier possibly generated by a non explored sequence that includes (or is included in) the current frontier and therefore is not sentinelled by it.

Reduction_i(s’(L), S’(L), s(L), S(L))

BEGIN

     s(L)=  
         FOR_ALL m s’(L)

              FOR_ALL hyper_L-1_clause ciset(m)

                  FOR_ALL enlargement 
[image: image85.wmf]j

c


                     IF(EACH hyper_L_clause hc of S’(L) includes at least one clause of 

                                                                                                    set(m){
[image: image86.wmf]j

c

}-{ci})

                                  THEN replace ci with 
[image: image87.wmf]j

c


    s(L)= s(L) {m}

    S(L)= S’(L)

   Rename variables of both frontiers

END

Table 3: Pseudocode of the inner frontier reduction step at a level higher than 0.

Rename variables is a delicate step where the propositional variables are suitably grouped and renamed to retain all relational informations necessary for further reductions. See [Apolloni, Baraghini, Palmas, 1999] for further details.

2) The Reduction step gets one frontier closest to the other, without leaving chance to the latter for a further reduction. Moreover, this step works profitably only on the modified frontier. Thus, at each jump we must decide on which frontier to devote it.

3) At the end of the resizing of hyper_L_monomials [hyper_L_clauses], we give names to the hyperliterals in argument to these forms. The target is to rewrite  hyper_L_monomials as simple conjunction and hyper_L_clauses as simple disjunction of these new literals. This allows us to deal with the subsequent levels as we do with the first one, with the sole eventual overhead of an explicit recording of inclusion relations between the new literals.

In the case that the planned hierarchical level has been reached (the level test is positive), the loop ends and the procedure continues with the following step:

3° Synthesis: Draw a consistent hypothesis. In particular, if the wanted formula belongs to CM(r;L), look at the outer border.  If r is unbounded, then the wanted formula coincides with the outer border, otherwise try to consistently group, if possible, the frontier hyperclauses according to the bound. Analogously, for a target formula belonging to Cm(r;L) look at the inner border with the same caution on the number of connected hypermonomials.

The set of hyper_L_monomials or hyper_L_clauses is obtained from an exhaustive check on all the possible r-partitions of the hyperpoints constituting the inner frontier in the first case and the outer frontier in the second. The check consists in verifying if a hyperpoint of the final hypothesis can be associated to each partitioned subset, namely a hypermonomial to hypermonomials and a hyperclause to hyperclauses. The requirements are that the hyperpoint in the hypothesis contains or is contained by, respectively, all the hyperpoints in the related subset and is consistent with the whole opposite frontier. Both requirements are verified in terms of sentinelling actions of involved hyperliterals. Now, the combinatorial complexity, which we evaded during the jumps since we were interested in just one possible pair of frontiers, emerges completely, as it will be shown in the next Theorem 3.

When the head connective is a disjunction, this step can be coded as in Table 4.

Synthesis_(s(L),S(L),solution, r)

BEGIN
    {DO_WHILE(CHECK=TRUE or search is exhausted)

            CHECK_IF

                    there exists [image: image88.wmf]A

 ={A1,...,Ak'} with k'(r such that:

                    {  Ai is a set of hyper_L_monomials of s(L )      

                       [image: image89.wmf]A

i

È

i=1

k'

 = 

s

(

L

)


                       FOR_EACH  Ai a mi exists such that:

                             ujset(mi) only if

                                          FOR_EACH (m Aithere exists a uset(m) such that u  uj
                              FOR_EACH (hyperclause hc of  S(L )) hc includes at least

                                                                                                  one  ujset(mi) }

             if (check = true) then solution = [image: image90.wmf]m

i

È

i=1

k'


                           ELSE   synthesis=impossible
END

Table 4: Pseudocode of the synthesis step within mininside Cm(r;L).

Note that Abstraction and Reduction subroutines have special features at the first abstraction level, since they work directly with points rather than with formulas. 

Abstraction consists of applying in the reverse way the mappings of Lemmas 3 or 4 both to E+ and E-, as shown in Table 5.

Abstraction_0(E+,E-, s’(0), S’(0))

BEGIN

s’(0)= 

       FOR_ALL E+
               m=(xi if i=1) [([image: image91.wmf]x

i

 if i=0)]

               m=prime_representation(m)

               s’(0)= s’(0){m}

S’(0)= 
       FOR_ALL E-
               u=(xi if i=0) [([image: image92.wmf]x

i

 if i=1)]

               u=prime_representation(u)

               S’(0)= S’(0){u}

END

Table 5: Pseudocode of the abstraction step at level 0.

Operations in square brackets do not apply if the algorithm works on monotone formulas.

The reduction step at zero level requires both the enlargement of the inner frontier and the narrowing of the outer frontier. A possible routine is listed in Table 6.

Reduction_0(s’(0), S’(0), s(0), S(0))

BEGIN

  Reduction_o(s’(0), S’(0), s’(0), S(0))
  Reduction_i(s’(0), S(0), s(0), S(0))
END

Table 6: Pseudocode of the reduction step at level 0.

An analogous routine should work with an inverted sequence of single frontier reductions.

The features of this algorithm allow us to state the following:

Theorem 2: PAC meditation algorithm learns hypotheses consistent with inner and outer frontiers without information waste.

Corollary 2: PAC meditation learns mininside  Cm(r;L) and maxinside CM(r;L) without information waste whenever SYNTHESIS = TRUE.

3 Symbol grounding through neural networks

The coexistence of both symbolic and subsymbolic tools is a distinguishing feature of our procedure. We give meaning to symbols through a subsymbolic device (a neural network) but we do not exclude the possibility of modifying it on the basis of previous knowledge or personal intervention. We have formal rules to jump abstraction levels but we have wide opportunities of specializing the rules according to our preferences. Finally, the last decision on the suitability of the learnt concept is up to us. The effectiveness of this contrivance is assured by a set of both subsymbolic and symbolic feedbacks which integrate and harmonize the different actions with the different coexisting targets.

The whole procedure figures as a set of forward steps, where features are propagated to the formulas passing through the subsymbolical layers of the neural network and the symbolical level of the abstraction process, and backward steps where a suitability measure of the formulas is backpropagated to the output of neural network and from there to its hidden layers in the usual way.

The basic units of processing in this architecture are the literals.  In particular at first level literals are constituted by affirmed variables only. This is not a great constraint, since, in case that a non monotone formula needs to explain the training set examples, we can duplicate these variables so that if the former are in number of n, vn+i=1-vi; i.e. the same set example that assign value 1/0 to vi  it assigns value 0/1 to  vn+i.  Thus vn+i acts in a monotone formula like in a non monotone one. Note that the meditation strategy - starting from lemma 1, and continuing with abstraction jumps, expansions and reductions - assures that no contradictory formula (like vi  and 
[image: image93.wmf]i

v

) will be generated. 

In this section we will discuss how to associate assignment of these variables to the training set examples. 

3.1 From features to propositional variables

At the basic level, level 0, the literals are propositional (Boolean) variables which can be affirmed or negated. Hence, the basic atoms of the created hypotheses are the propositional variables which provide symbolic descriptions of the target concepts. Assigning a meaning to these symbols is usually a non trivial task and is expressed with the term grounding. The problem is to create a mapping from the feature space to the propositional variables space. The former is the space in which our sample is given and the latter is the space in which PAC meditation works. In other words, given a feature vector derived after the preprocessing of the input signal (for instance images) a vector of propositional variables must be created. This vector will then be subjected to further analysis using PAC meditation.

Two basic requirements exist. First, the mapping must have a self-organizing character since the exact form of the propositional vector for each feature vector is not known in general; rather, the specific relations existing both among the elements of each feature vector and among the feature vectors themselves should be taken into account. Second, we should be able to control the whole process by means of a feedback signal representing the correctness of the produced mapping. Thus, the system should be able to find a minimum energy mapping for each input feature vector, and also it should be able to handle an error term (feedback signal). 

This feedback is actually the connecting and communicating point between this initial mapping stage and the symbolic processing stage which exists at a higher level. 

[image: image94.wmf]Titolo:

model-1.fig

Autore:

fig2dev Version 3.1 Patchlevel 2

Anteprima:

L'immagine EPS non è stata salvata 

con l'anteprima inclusa in essa.

Commento:

L'immagine EPS potrà essere stampata con una stampante 

PostScript e non con 

altri tipi di stampante.


Figure 17: Diagram of the model.

The propositional vector which is formed in part A is the one which is used for further processing at the symbolic stages.

The diagram of a model which has the potential to fulfill the above requirements is depicted in Figure 17. In that, the basic structure is that of a MLP network. However, the difference lays in the last (output) layer. As mentioned in section , two modes of operation coexist in this model. Thus, the output layer consists of two parts. The first part (part A) is the one which is actually used by the consequent symbolic processing stage. The units of part A must converge to values either very close to -1 or to +1 shaping in such a way the propositional vector which is produced after thresholding these values.

Part B has an indirect effect in the whole process. Although it is not used at the further stages it makes the mapping more sensitive to the input vector by adjusting the weights of the system in such a way as to create a mirroring of this vector in part B of the output. Since units can take values in [-1,+1] the input feature vectors are normalized in this space. The hyperbolic tangent activation function (10) is used for each unit.

3.1.1 Supervised part

As mentioned above, part B is trying to reproduce the input vector. The operation in this part is in line with the classical MLP network as presented in section 2.3.

Now 


[image: image95.wmf](

)

å

L

Î

-

=

j

j

j

s

t

E

2


(14)

and the error  which is back propagated from each unit j of this part upon presentation of input pattern p is:


[image: image96.wmf](

)

(

)

pj

pj

pj

pj

s

t

-

-

=

2

net

1

2

b

d


(15)

where tpj is the target for unit j of part B. This target is simply the value of the corresponding element of the input pattern p.

3.1.2 Unsupervised part

Things are different for the units of part A of the output. In this case, instead of the typical error (energy) function for the MLP the network has to minimize the following:


[image: image97.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

=

Õ

L

Î

-

-

-

j

x

pj

x

pj

pj

pj

x

x

E

)

1

(

)

1

(

log


(16)

where 
[image: image98.wmf]2

1

pj

pj

s

x

+

=


and ( is the set of part A outputs. This function was selected because it is minimized for ouput values close to the limits of the activation space (i.e. –1 and +1). This is depicted in the Figure 18 where we can see a 2D example of this function.

Following the usual way for the MLP the delta term piped back through the network is

(j = f’(netpj)(j
(17)

where


[image: image99.wmf]pj

pj

pj

p

j

s

s

s

E

-

-

=

¶

¶

=

1

log

a


(18)

[image: image100.wmf]Titolo:

Autore:

gnuplot

Anteprima:

L'immagine EPS non è stata salvata 

con l'anteprima inclusa in essa.

Commento:

L'immagine EPS potrà essere stampata con una stampante 

PostScript e non con 

altri tipi di stampante.


Figure 18: The error function for part A.

Using j as is in (18) the network is left to independently decide about the values of part A towards which it will converge for each input pattern. Of course, parameters such as the learning rate, the initial weights and the influence from part B (through the hidden nodes) have an important role in this decision.

In order to have a way to direct the mapping which is produced we need to intervene to parameter . We can do this by inserting an extra term which has the form of ‘directed noise’ added to the initial value of  when we are not satisfied with the ‘correctness’ of the result. Effectively, when the convergence value for some unit is not satisfactory we ‘shake’ the network in order to search for a new equilibrium.

Thus, the new value for j is:


[image: image101.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

+

-

+

-

=

2

1

1

2

1

log

pj

pj

pj

A

j

s

s

q

p

a


(19)

where (A is a balancing parameter between the errors affecting the two parts of the network, and j is a term related with our ‘punishment’ to each unit j of part A and to the network in extent. Its value is:


[image: image102.wmf]q

j

 =

1-2

G

(

s

pj

)

p

×

r


(20)

where  is a threshold function, p is the value of the ‘punishment’ and r is a random value in {0,1}. The first term in (20) is used in order to specify the sign of j so that the change is in the correct (i.e. the opposite from the one that the unit is moving into) direction.

It must be noted that the above ways to compute the error which is backpropagated are applied only for the weights to output units.

For the updating of the weights of the lower layers of the network the classical way is used for all the cases as presented in equations (11-13).

3.1.3 Using a prejudice

If we have a preliminary idea of how feature relate to symbols, i.e. we are able to assign values to the propositional variables associated to the examples of the training set, then we can operate in a supervised mode. This means that the mirroring functionality of part B is substituted by the usual functionality of simulating a given output, and this task is committed directly to part A. 

The key point here is to consider these target vectors as a prejudice of ours about how the data should be explained. Therefore, we want to leave the symbolic system free to express its opinion also and we need a way to use this extra information. The strategy is the following:

We remove part B from the lay-out in Figure 17.

The first time we use an error function which comes from the sum of the typical MLP error function and the ‘edge-pulling’ function (16). Thus it is:


[image: image103.wmf]E

p

=

E

1

+

E

2

=

1

2

t

p

j

-

o

p

j

(

)

j

=

1

k

å

2

+

log

x

p

j

-

x

p

j

1

-

x

p

j

(

)

1

-

x

p

j

j

=

1

k

Õ

æ 

è 

ç 

ö 

ø 

÷ 


(21)

where

[image: image104.wmf]x

p

j

=

o

p

j

+

1

2

;

opj is the output of unit j upon presentation of pattern p on every association;

tpj is the target for the jth unit;

k is the number of units of the output layer.
The change in the weights of the last layer must then be proportional to 
[image: image105.wmf]d

p

j

 where 
[image: image106.wmf]d

p

j

=

¢ 

f 

act

net

p

j

(

)

a

p

j

and


[image: image107.wmf]a

p

j

=

-

¶

E

p

¶

o

p

j

=

-

¶

E

p

¶

o

p

j

-

¶

E

p

¶

o

p

j

=

t

p

j

-

o

p

j

(

)

-

log

o

p

j

+

1

2

1

-

o

p

j

+

1

2

æ 

è 

ç 

ç 

ö 

ø 

÷ 

÷ 


(22)

The aim of minimizing E1 is to learn the proposed mapping while the aim of minimizing E2 is to keep the values close to the edges of their range (in this case -1 and 1).

As in the previous case, we include the symbolic system's response by adding directed noise 
[image: image108.wmf]J

p

j

to the above sum. Moreover, as the number h of hybrid cycles (i.e. subsymbolic-symbolic interactions) increases, we move the target of the system from learning the proposed mapping to complying with the symbolic preferences through a weighting function depending on h. 

Thus, 
[image: image109.wmf]a

p

j

 now reads:


[image: image110.wmf]a

p

j

=

1

h

t

p

j

-

o

p

j

(

)

-

1

-

1

h

æ 

è 

ö 

ø 

p

A

log

o

p

j

+

1

2

1

-

o

p

j

+

1

2

æ 

è 

ç 

ç 

ö 

ø 

÷ 

÷ 

-

J

p

j

æ 

è 

ç 

ç 

ö 

ø 

÷ 

÷ 


(23)

with same notations for where 
[image: image111.wmf]p

A

 and 
[image: image112.wmf]J

p

j

 as in equation (19).

A typical management of errors E1and E2 is shown in Figure 19. Here we see a descent of E2 driving the network towards different assignments to the propositional variables in order to comply with the fitness suggestions, with a consequent increasing of E1.

[image: image113.wmf]Titolo:

/home2/malchiod/paperi/FromSynapsesToRules/err-due.eps

Autore:

GIMP PostScript file plugin V 1.06 by Peter Kirchgessner

Anteprima:

L'immagine EPS non è stata salvata 

con l'anteprima inclusa in essa.

Commento:

L'immagine EPS potrà essere stampata con una stampante 

PostScript e non con 

altri tipi di stampante.


Figure 19: Graph of E1 (light plot, right Y scale) and E2 (bold plot, left Y scale), during 750 learning iterations with learning rate (() set to 10-4, pfactor=0.1 and the other tuning parameters (i.e. punishment (p) and feedback weight ((A)) shown above the graph. Vertical bars indicate different training cycles.

3.1.4 Symbolic feedbacks

As it was already mentioned, controlling the value of  we can intervene in the mapping process. There are many ways in which this can be done. Initially, when no communication with the symbolic layer yet exists, ‘punishment’ is related with the Hamming distances of the formed propositional vectors.

Thus, we can control whether these vectors should have a low or a high Hamming distance from each other by giving a positive value to p whenever we are not satisfied with the produced output in part A. This can be done in a pattern level or in a unit level, i.e. punishing all units or only some of them. 

It should be noted at this point that the mapping which is produced is basically defined by the nature of the input patterns and the interrelations existing among them. For example, using low values for p, (i.e. 0.01, 0.05, etc.) and applying the punishment when the Hamming distance of the produced patterns is less than a value h we declare to the network our desire that the produced patterns are different from each other. However, with low values of p we cannot enforce our decision more than the level in which the input patterns themselves can be classified into various classes. Increasing the values for p (i.e. 1,2,5, 10, etc.) we can augment the level in which our preference for different output patterns is applied over the normal grouping of the input patterns. 

When the first mapping is produced it is passed to the symbolic layer. This mapping is checked during the PAC meditation stage and a feedback is then passed back to the subsymbolic layer. As mentioned, this feedback is related with the correctness of the proposed mapping and ask for alternatives either in a pattern or in a unit value also. A second feedback concerns how well the symbols produced by the subsymbolic mapping work to produce suitable formulas. This calls for a suitability measure of symbols. The approach that we follow stems from the use of the propositional variables in the frontiers that are constructed from the positive and negative examples. There are two extremes in this case. The first one is when we have a pair of very succinct frontiers, say consisting of one monomial and one clause only, which in their turn consist of one propositional variable each. In this case the symbols used are likely related to all features and it means that we promote a subsymbolic explanation of the data. The other extreme is when we have propositional variables related to a few features each and frontiers described by a very large number of terms. In this case we transfer the responsibiliy for the explanation of the data to the symbolic part mainly.

Our basic goal is a balanced distribution of the data explanation obtainable through suitable feedback functions. Thus we look  for a set of formulas well nested, such that the satisfaction of one formula strongly depends on the satisfaction of the other, and we measure this structuring through the mutual information of each formula in respect of the others.

Namely, given the set of hypermonomials constituting the inner border, let us focus on monomial a and on the union of the remaining monomials that we denote by b. Thus, ab is the inner border  that contains all n1 positive points.

Let us denote by m the points falling in a and  those falling in b. Moreover, we will denote by A the event: a point belongs to a, and B the event: a point belongs to b. We will partition the support of the inner border in two different ways: i) through A and ii) through B and . We mean by HA the entropy associated to the first partition and by HA/B the conditional entropy associated to the first partition conditioned to the second one.

By definition the mutual information between A and B is


[image: image114.wmf]I

A,

B

=

H

A

-

H

A/B

=

-

p(A)

ln

p(A)

-

p(

A 

)

ln

p(

A 

)

+

p(B)

p(A/B)

ln

p(A/B)

-

p(

A 

/B)

ln

p(

A 

/B)

[

]

+

p(

B 

)

p(A/

B 

)

ln

p(A/

B 

)

-

p(

A 

/

B 

)

ln

p(

A 

/

B 

)

[

]


where the last term is zero since 
[image: image115.wmf]p(A/

B 

)

 = 1.

Let us estimate probabilities with frequencies thus having


[image: image116.wmf]ú

û

ù

ê

ë

é

-

-

+

+

-

-

-

-

=

n

n

n

n

n

n

n

s

s

s

s

m

m

m

m

n

n

m

n

n

m

n

n

m

n

m

ln

ln

ln

ln

I

ˆ

1

1

1

1

1

1

1

B

A,


Thus,


[image: image117.wmf]n

1

ˆ 

I 

A,

B

=

-

m

ln

m

-

n

ln

n

+

n

1

ln

n

1

+

m

s

ln

m

s


We define the antifitness f( of a formula ( as:


[image: image118.wmf]f

Y

=

n

1

ln

n

1

-

n

1

ˆ 

I 

A,

B


We want the mutual information to be as high as possible. Its maximum value is ln n1. Thus, we now want f as low as possible.

When the first mapping is produced it is passed to the symbolic layer. This mapping is checked during the PAC meditation stage and a feedback is then passed back to the subsymbolic layer. 

The antifitness is used in three ways:

1. Specifically we use the fitness of a single formula to decide whether or not changing free parameters (mainly the lower level formulas breaking points) to obtain a different issue of it. 

2. Globally we cumulate the fitness on the inner and outer frontier to rank the pair of the frontiers when we have alternatives in the creation of the atomic formulas. 

3. Locally, the fitness of an atomic formula is reversed on the single propositional variables that the formula consists of. Namely, the fitness of a formula affects with its value all the involved literals in all training examples that are related with this formula. In greater detail we compute:


[image: image119.wmf]v

i

p

=

d

(

Y

,

v

i

)

Y

Î

cover(

p

)

å

f

Y


(24)

where


[image: image120.wmf]v

i

p


is the fitness of literal 
[image: image121.wmf]v

i

 for pattern p;
cover(p)
returns the set of formulas (i that cover pattern p  (i.e. p internal in the  case of p being a positive example or external otherwise);

(((,vi)
returns 1 when vi is used in ( and 0 otherwise;

f(
is the fitness f of atomic formula (.

and pass 
[image: image122.wmf]v

i

p

 back to the subsymbolic stage in order to update the feature to symbol mapping. 

One way to connect values 
[image: image123.wmf]p

p

j

 and 
[image: image124.wmf]v

j

p

 is the following:


[image: image125.wmf]p

p

j

=

v

p

j

C

p

max


(25)

where C is the number of classes and pmax is the maximum value for the punishment. Since a good output unit value for a pattern (used for setting the corresponding propositional variable) is characterized by low 
[image: image126.wmf]v

j

p

, this output will get a very low, if any, punishment.

The parameter 
[image: image127.wmf]p

p

j

, can be also a means to handle any symbolic inconsistency that may arise in the mapping. We mean by symbolic inconsistency the case when a positive example is not included in all the clauses of the outer frontier and/or when a negative example is included in some of the monomials of the inner frontier.

For each pattern, finding the output units that are responsible for any symbolic inconsistencies is the first step. We can thus create for each pattern p a vector tp. Each element  
[image: image128.wmf]t

p

i

 of this vector has the number of the symbolic inconsistencies this unit is involved in. For example, if we have the negative example p=11010011 and two of the monomials are the v1v2 and v1v7 then, tp {2,1,0,0,0,0,1,0}. We set 
[image: image129.wmf]p

p

j

 through this vector as follows:


[image: image130.wmf]p

p

j

=

L

n

(

t

p

)

j

p

factor

p

max

+

v

p

j

C

p

max


(26)

where Ln is a threshold function setting the n highest values of tp to 1 and the rest to 0 and pfactor is a balancing parameter between the two added noise defining factors.

Here below we show two logs of the global antifitness based on the local and specific signals, respectively (see Figure 20). The graphs denote that we are still far from fixing stable decrease of the antifitness: some smoothing operators are needed in order to reduce the waving of the fitness log at both symbolical and subsymbolical stage.

[image: image131.wmf]Titolo:

Clipboard

Autore:

(Mathematica X 3.0)

Anteprima:

L'immagine EPS non è stata salvata 

con l'anteprima inclusa in essa.

Commento:

L'immagine EPS potrà essere stampata con una stampante 

PostScript e non con 

altri tipi di stampante.


[image: image132.wmf]Titolo:

Clipboard

Autore:

(Mathematica X 3.0)

Anteprima:

L'immagine EPS non è stata salvata 

con l'anteprima inclusa in essa.

Commento:

L'immagine EPS potrà essere stampata con una stampante 

PostScript e non con 

altri tipi di stampante.



Trainig cycles

(a)
Splitting repetitions

(b)

Figure 20: Graph of the normalized values of (a) the antifitness for inner  borders while retraining the neural network and (b) the antifitness of the outer borders as resulted from repeated applications of the distributive property of eq. \ref{splitting} within the first level of abstraction. Testbed: philosopher dinner.

3.2 From propositional variables to features

Using the above presented neural network and PAC meditation, a series of transitions from subsymbolic to symbolic processing (through different mappings) and backwards (through the symbolic feedback) can exist. The result of this two way communicating fine-tuning process is a coherent mapping from the feature space to the propositional variables space and a set of Boolean formulas highly approximating the target concepts.

Having this mapping, we are now faced once again with the question: What is the meaning of these propositional variables ? Of course, we are in a better situation than before because we now have the mapping. However, the exact meaning still eludes. This has to be searched in the intrinsic characteristics of the mapping process. 

The approach that we follow at this point can be summarized in the following task: Find the minimal MLP that can perform this mapping and examine the relations between the output units (propositional variables) and the input units (coordinates in the feature space).

Thus, a typical MLP (as is described in section 2.3) is trained to perform this mapping and a pruning process is performed until a minimal structure of the network has been reached. Then, for each of the output unit that participates in the Boolean formula we trace back the input units that contribute to its output. 

The pruning is based on two actions: removal of useless connections and removal of useless units.

The procedure for accomplishing the first task starts from the simple observation that the histogram of the connection weights is Gaussian-like, with the most connections concentrated around 0 and only thin tails significantly move from this value. We assume that connections of the first class has the sole undesirable role of raising noise in the network processing, while the sole few connections significantly different from 0 are responsible of a correct computation of the neural network. Thus we leave active only these connections, while the former are pruned. 

Concerning units, they are considered useless for two reasons:

1. either no connection incomes or outcomes them after the above pruning, or

2. the variance of the produced signal is close to zero. Actually zero variance is the typical case of an input node that forwards ever the same signal. This means that the output does not depend from this input, and then we remove it. A more delicate intervention occurs when the variance is not exactly zero; in this case we must select a suitable threshold on the variance to decide the remotion. 

After pruning, the network needs to be retrained in order to essentially absorb small variation in its behaviour due to the marginal contribution of the removed part.

Actually, the literature on pruning a neural network is very rich of many sophisticated methods (see for instance [Akaike, 1985], [Apolloni and Ronchini, 1994] and [Murata, Yoshizawa and Amari, 1995]). We preferred however in this case our rough strategy, demanding to the syntactic part a better exploitation of the inner structure of the training data. 

An example of this framework of operation is given in section 6 where a preliminary examination and evaluation of the total operation of the hybrid system is performed.

4 The global management of the procedure and its Computational complexity 

4.1 The global management

As mentioned before the whole procedure consists of a set of forward and backward steps. In the formers, features extracted from the sensory data are propagated through a trained neural network to obtain propositional variables. These low level symbolic properties of the sensed data are transformed into higher level properties by the meditation process. At each level a pair of minimal and maximal hypotheses are described in terms of these properties. Going backward, a fitness measure of the computed formulas is transmitted to the previous level with the twofold scope of driving new abstractions toward more fitting formulas and of giving the neural network a measure of suitability of its features-to-symbols mapping. This information is at the basis of a retraining of the neural network and then a new pair of forward-backward steps. The global fitness of the final formulas is used to decide the formal description of the goal concept in output of our procedure. However, the last decision on the suitability of the learnt concept is up to us. The coexistence of both formal (symbolic) and informal (personal preferences) rules is a distinguishing feature of our procedure indeed.  We have formal rules to jump abstraction levels but we have wide opportunities of specializing the rules according to our preferences. 

Finally, in addition to formal rules, subsymbolic devices and informal tools, room is available in this procedure for typical argumentations of fuzzy set theory in three frameworks. 

a. as it has been outlined before and will be detailed in the next section, finding a special hypothesis for our goal concept could result in a computationally unbearable task. Rather, we can describe the hypothesis through a pair of maximal and minimal hypothesis, the gap between them representing a fuzzy frontier of the hypothesis supported. Thus membership function to the hypothesis is 0 outside the outer border, is 1 inside the inner border and has an intermediate value in the gap. At moment we have no theoretical tools for determine these intermediate value. We can only state, and numerical experiments confirm, that these values are squeezed towards 0 or 1 when we jump up to higher abstraction levels. 

b. The borders' contours can be further fuzzyfied to gain description simplicity. Jumping toward higher level properties gives rise to an increase of the number of symbols employed, as they come from a renaming of combinations of lower level symbols. In essence, with these new symbols we are exploring properties more detailed than at lower level. This may prompt us to focus our attention on details that, though syntactically correct, in the reality formalize random varieties of a given property. This is a sort of overfitting not far different from what happens when we fit a set of points with a polynomial of exceeding degree: we fit points well, but in so doing we are pursuing random shifts that are noisy to understand the  true relation among data.
In these cases we can try to simplify formulas by unifying some symbols at the cost of broadening an outer border or tightening an inner border. A specific example is shown in sect 6.3.
c. Pac-meditation is a procedure for describing concepts in a non competitive way. This means that,  if we want to discriminate between different concepts we have: 

1. a global training set where examples are labelled by a variable assuming as many values as as the number of classes we want to distinguish. 

2. a specific training set for each class, whose positive examples are the examples labelled by this class, and negative examples are the remaining ones. 

3. A set of pair of borders (a pair for each class) consistent with the above training sets. 

4. The same set of formulas may overlap on points non observed in the training set. 

d. The overlapping zones are  typical fuzzy frontiers between classes. Here again we have no formal results for fixing intermediate membership values in (0,1). We can only state that these values are squeezed towards 0 or 1 with the increase of the training set size and the increase of the abstraction level. 

4.2 Computational complexity

Computing a hypothesis may require a time steeply growing with the number of examples. 

We have no general results like Corollary 1 and Lemma 1 to bound time complexity, besides the following negative worst case theorem for consistent hypotheses.

The distribution free upperbound in Corollary 1 refers to a consistent hypothesis belonging to the same class of the concepts, that in any case represents a reasonable target for a learning strategy, our procedure included. The decision version of this target is the following CONSISTENCY problem, where n is the number of propositional variables in input to our formulas:

CONSISTENCY (Hn)

Instance: a labelled sample (m  on Xn
Question: is there a function hHn consistent with (m ?

Now, from one side it is evident that  if CONSISTENCY (Hn) is in P then it is possible to find an algorithm that outputs a consistent hypothesis (if any) in a time polynomial in n if sample complexity is polynomial too. From the other side the following facts hold:

Fact 1 [Apolloni, Baraghini, Palmas, 1999]. If CONSISTENCY (Hn) is NP-complete then our target formula can not be learned by Hn representation in polynomial time (unless RP=NP).

In force of the above we have the following:

Fact 2[Apolloni, Baraghini, Palmas, 1999] k-term DNF and k-clause CNF can not be properly learnt in polynomial time.

It follows as an easy corollary:

Fact 3 mininside Cm and maxinside CM can not be properly learnt in polynomial time.

We should note, however, that the time complexity of learning a given concept class might strongly depend on the functional representation of the hypothesis. Focusing on Boolean formulas, it is well known that the consistency problem restricted to k-term-DNF(n) formulas (union of at most k monomials on n propositional variables) is still NP-hard for every preassigned k(2 [Pitt & Valiant, 1988]. Therefore finding within the class of k-term-DNF formulas an element approximating another one in the sense of Corollary 1 appears unfeasible. On the contrary if we decide to use a less concise description of these formulas, for instance by representing them through k-CNF formulas (conjunctions of clauses with at most k literals each), we can find within this class a hypothesis on a k-term-DNF in polynomial time [Pitt & Valiant, 1988]. 

We speak of proper learning when concept and hypothesis classes coincide. In our abstraction chain the companion learning algorithm requires at any abstraction level solving a NP-easy problem to proper learning. We may decide solving approximately this problem, with a consequent drift of the accuracy parameters. In addition, the algorithm supplies in polynomial time inner and outer borders as non proper hypotheses for the target concept.

This facility is formally stated as follows. Coming to consider only mininside Cm(r;L) or maxinside CM(r;L) classes and focus only on the connectivity depth, we might sum  the taxonomy of the various abstraction tracks as follows:

1. Starting from family G of (hyper)monomials of the inner border at some level, hypermonomials of inner border at further levels stem from the union of the former, level by level, as follows:



GGG

2. Starting from family G of (hyper)clauses of the inner border at some level, hyperclauses of  outer border at further levels stem from the union of the former, level by level, as follows:



GGG

3. Goal formulas like

GGGorGGG

withoutany restriction on the number of subformulas grouped by the head connective, coincide with the inner frontier, representing a maximum of minimal consistent hypotheses, or with the outer frontier representing a minimum of maximal consistent hypotheses coming from these frontiers, respectively. Restrictions on the number of subformulas further move the goal formula toward the center of the gap between frontiers.

4. Goal formulas like:


GGG

orGGG

can be viewed as a subclass of the previous formulas with the arity of the head connective set to 1. 

The peculiarities of our abstraction algorithm allow us to state the following:

Theorem 3: For a polynomial chain with a constant number of abstraction jumps and a PAC Meditation algorithm, computing frontiers requires in polynomial time, while learning classes mininside Cmmaxinside CM  is NP-easy [Garey & Johnson, 1979]. 

Its proof passes through the following lemmas:

Lemma 7: Any abstraction jump in a polynomial chain is computed polynomially.

Lemma 8: Learning a consistent restriction of the frontiers  i.e. a disjunction of hypermonomials or a conjunction of hyperclauses in a number less than the number by which they are present in the inner and outer frontiers, respectively, that results in a formula consistent with the frontiers themselves  is NP-easy.

To prove this lemma we can refer to the following k-Grouping decision problem:

k-Grouping
Instance: two sets s(L) and S(L)  of  hyper_L_monomials and  hyper_L_clauses, respectively, and an integer k.

Question: is there a collection [image: image133.wmf]A

 ={A1,...,Ak'}, k'(k, such that:

                 { Ai is a set of hyper_L_monomials of s(L)      

                   [image: image134.wmf]A

i

È

i=1

k'

 = 

s

(

L

)


                   for each i{1,...k'}

                        FOR_EACH (hyperclause hcS(L)

                             IS THERE a u'set(hc) such that

                               FOR_EACH  (m Aithere exists a uset(m) such that u  u'}    ?

and observe that it polynomially reduces to the following well known NP-complete problem [Garey & Johnson, 1979].
SATISFIABILITY OF A Boolean expression

Instance: A set Z of Boolean variables, the set B of the 16 Boolean binary connectives and a well-formed Boolean formula F on Z using the basis B [Wegener,87].

Question: is there an assignment of Z satisfying F  ?

Moreover we recognize that our original problem is solved by linear number of calls to k-Grouping. Namely

Lemma 9: k-GROUPING is polynomially reducible to SATISFIABILITY OF A Boolean expression

Summarizing, the number of  steps of our algorithm is a constant and the sole step requiring more than polynomial time in the number of the examples is Synthesis, which solves the NP-easy problem of reducing inner or outer frontiers and this step is performed only one time. Thus we can conclude that the whole procedure is NP-easy.


Example 4: A very essential version of k-Grouping problem for PAC learning k_term-DNF formulas is the following:

k-Grouping a set of monomialS
Instance: a set s of  monomials on {0,1}n, a set D of incomplete assignments on {0,1,*}n and an integer k.

Question: is there a partition [image: image135.wmf]A

 ={A1,...,Ak'}, k'(k, of s such that:

               the  monomials m*i, defined by 

                        uset(m*i) if and only if  FOR_EACH (m Aiuset(m) 

               are such that no point of D satisfies m*i      ?

5 Numerical examples

In the following we will discuss three elementary experiments in order to stress some relevant properties of the procedure. Namely we will consider toy example concerning the formal recipe of a social dinner to appreciate a possible conclusion of the whole procedure. We will also consider a botanic classification task, where classification rules are widely known and employed by the scientists, though  with some discrepancies. In this case, rather than rediscovering these rules, we aim at assessing the compression capability of the procedure.

These two examples represent also typical instances where initial information about the feature to propositional variables relation is available (involving the subsymbolic procedure of section 4.1.3), and where no prior information is given (as an application of the supervised learning in section 4.1.2), respectively. Thirdly we will compare the generalization capability of our procedure in respect to other widespread methods having similar set of emotional examples as testbed.

For exposition clarity we discuss second examples first, then we consider the final formulas describing a successful social dinner and maintain as last the discussion of generalization capability in the last testbed.

5.1 Plant Classification

The problem therein solved falls in the family of problems for which our procedure has been designed: Starting from features available to our senses (mainly visual features) the database designer mainly draws CNF characterizing the singles species. The generical form is in fact of this kind:

“species xx is such that feature 1 can assume values from v1 to vn1 and feature 2  from u1 to un2, etc...”

This is a very long description that takes around 800 bits. We try to compress it by finding more structured and synthetic formulas on suitable combinations of features.

The other two objectives are checked directly on some examples of outputs of our procedure. Namely, according to Figure 2, we kept the records of some plants within some species (see next section for closer details) and extracted a set of propositional variables with a network devised as in section 4. Then we passed these variables to PAC meditation. This module gave a formal description of each species as the result of a former optimization of the characteristic of the ouput formulas, where the optimization is done according to a symbolic feedback within the module itself. At the end of this phase the neural network receives an external feedback, still symbolic, aimed at modifying the previous mapping from feature to symbols to obtain more convenient formulas describing the classes. On the basis of this feedback the procedure start a new cycle with a new training of the neural network. After a certain number of these cycles, possibly when we are satisfied of the issued formulas, the last phase of our procedure starts, aiming to give meaning to the used propositional variables. In our perspective this consists in drawing a new neural network computing the same feature to symbol mapping in such a way that each propositional variable is affected by a small number of features in a way that is fixed by the connections linking them to the variables, thus characterizing a property on these features.

5.1.1 The plants data

The experimental dataset for the preliminary evaluation of the hybrid system described in this report was constructed from descriptions of five species from the genus of Eucalyptous and three from Angophora, respectively. After an extensive search in the botany literature for descriptions of plants in order to construct the dataset, it was concluded that the best case was the one describing the above genuses.

These descriptions were found in [http://kaos.erin.gov.au/life/species/ species_flora.html.]. That was because apart from their clarity and availability in the internet they were also accompanied with a search tool. Given a plant description according to a number of features the latter could respond with the species the plant belonged to.

Thus, the species used were the following:

 Eucalyptous: Bridgesiana, Blakelyi, Cinerea, Polyanthemos, Viridis.

Angophora:  Woodsiana, Floribunda, Melanoxylon.

The selection of the specific species was based in the existence of images showing in detail their characteristics. 

For each species there was a text description of its main characteristics using a set of 45 features. These features can be seen in Table 7 and belong to two categories. Numerical, where the value was a numeric value (e.g. leaf length = 7.8cm), and textual, where the value was a non numeric attribute (e.g. fruit shape = hemispherical). The number of numerical features was 14 and the number of the textual ones was 31.

Numerical
leaf_length, leaf_width, fruit_length, fruit_width, fruit_valve_number, infloresence_flower_number, operculum_length, operculum_width, hypanthium_length, hypanthium_width, pedicel_length, peduncle_length, petiole_length, height 

Textual
leaf_shape, leaf_colour, leaf_surface, leaf_colour_pattern, leaf_arrangement, leaf_attachment, leaf_apex_shape, juvenile_leaf_shape, juvenile_leaf_colour, juvenile_leaf_colour_pattern, juvenile_leaf_attachment, juvenile_leaf_arrangement, juvenile_leaf_surface, fruit_shape, fruit_location, fruit_orientation, fruit_surface, fruit_pattern, fruit_disc_type, bark_colour, bark_texture, infloresence_type, operculum_shape, hypanthium_shape, bud_shape, bud_surface, peduncle_shape, petiole_shape, habit, seed_colour, lateral_vein_visibility

Table 7: The features describing the plants.

This list of features was also the one used from the search tool. Using the above list and the descriptions of the species, a number of `plants' for each species were created. The values of the features for each plant were set according to the possible values and ranges given in the description of the corresponding species. Thus, five instances for each species were created resulting in a total of forty examples in our dataset. 

For the conversion of each plant description to an input vector for the neural network, the numerical values were normalized and the textual values were unary encoded. The normalization of the value of each numerical feature was performed in the space [-1,1] according to the feature's maximum and minimum values while the unary encoding was performed according to the total number of possible values for the specific textual feature. The values {-1,1} were used. Thus, if a textual feature could have 4 values (always including the empty value as the first of the possibilities), they were encoded as: {-1,-1,-1},{1,-1,-1},{-1,1,-1} and {-1,-1,1}.

5.1.2 Classifying plants

Since there was no initial information regarding how many propositional variables should be used and what their meaning should be, the unsupervised network of section 4.1.2 was used. For the first mapping a set of 40 variables was used. That is, each input vector (45 features encoded in 96 elements for each vector) was mapped onto a bipolar vector of 40 elements. Although the size of the output vectors was set rather arbitrarily, the number of input features was also a factor taken into account.

When the first mapping was produced it was passed to the symbolic stage which created the 0 level inner and outer borders for each class. Examining these borders it was found that only 22 propositional variables were really used in the formulas. Thus, the mapping was repeated with the size of the output vectors reduced to 20 this time. The new mapping was then again passed to the symbolic stage and the new borders were produced. 

A problem which appeared in both mappings was that of the symbolic inconsistencies (section 4.1.4). Although an effort was made to attack the problem using the first part of equation (26), it was discovered that if the negated versions of the propositional variables were also available to the symbolic stage, the problem was instantly solved as non monotone formulas could also be created.

Using this approach a third mapping was created. This time the size of the output vectors was reduced to 15 and their negations were also sent to the symbolic part.

The structure of the network used was 96:25:111 (i.e. 96 input, 25 hidden and 111 output (15 for the propositional variables and 96 for the mirroring) units respectively).

The various parameters used for the mapping can be seen in Table 8.

(see section 4.1.2 for a description of the parameters).

(
Hamming
pmax
pfactor
(A

10-4
1.0
0.2
0
0.5

Table 8: The parameters used for producing the mapping of Table 9.

Parameter (is the learning rate.

The number of outputs units (upon presentation of all input vectors) that were being altered at each iteration can be seen in the graph of Figure 21a while in the graph of Figure 21b we can see the percentage of consistent clusters created during the mapping process. A consistent cluster in this case was one which included patterns belonging to one class and only one. A total of 26 clusters were created and the distribution of the patterns of each of the 8 classes in the clusters as well as the corresponding output vectors can be seen in Table 9.

[image: image136.wmf]Titolo:

alt-clust

Autore:

Tgif-3.0.18 by William Chia-Wei Cheng (william@cs.UCLA.edu)

Anteprima:

L'immagine EPS non è stata salvata 

con l'anteprima inclusa in essa.

Commento:

L'immagine EPS potrà essere stampata con una stampante 

PostScript e non con 

altri tipi di stampante.


Figure 21: The number of output units being altered (counted for all input patterns) (graph a) and the percentage of consistent clusters in the mapping (graph b) for each iteration during the mapping process.

Cluster
Binary Vector
Patterns
Original Class

1
000010110101000
31,  33,  34
7

2
000010110111000
32,  35
7

3
000110100101000
27
6

4
001010100111100
37
8

5
010000110101000
26
6

6
010010100111000
28,  30
6

7
010010100111100
36
8

8
010010100111110
38,  40
8

9
010010110111100
39
8

10
010110100101000
29
6

11
100000010101010
15,  13
3

12
100000111111100
23
5

13
100100010101010
11,  12,  14
3

14
101000011101010
5
1

15
101000111100100
24,  25
5

16
101000111101110
6
2

17
101000111110100
22,  21
5

18
101001010101010
4
1

19
101001010101110
2
1

20
101001011101010
3
1

21
101001011101110
1
1

22
101010000111010
17
4

23
101010001111010
16,  20,  18
4

24
101011000111010
19
4

25
101100011101110
9
2

26
101100111101110
10,   8,   7
2

Table 9: The clusters produced after 550 iterations for the 96(15 mapping with the parameters of Table 8. The output vectors (converted to binary from bipolar) are also shown as well as the patterns in each cluster with their original class.

Passing the mapping of Table 9 as well as the negations of the output vectors (a total of 30 literals where 
[image: image137.wmf]15

v

v

-

=

i

i

, i>15) to the symbolic part, a set of inner and outer borders were produced for each class. These can be seen in Table 10.

Class
Border
0_level formulas

1
Inner
v13v19v22v26+v9v19v22v26+v6v19v22v26


Outer
v22v19(v6+v9+v13)v26

2
Inner
v13v14v17v20v21v26


Outer
v21v13v26v14v17v20

3
Inner
v21v22v24v26v28


Outer
v28v24v21v26v22

4
Inner
v22v23v28


Outer
v28v23v22

5
Inner
v17v20v27v29+v17v18v20v29


Outer
v29v17v20(v18+v27)

6
Inner
v20v26v28v29+v23v28v29


Outer
v29v28(v20+v23)(v23+v26)

7
Inner
v17v19v28v29


Outer
v29v28v17v19

8
Inner
v13v19v24v29+v13v18v19v21v23v24


Outer
(v23+v29)(v18+v29)(v21+v29)v24v19v13

Table 10: The 0_level inner and outer borders for the 8 classes as produced after processing the mapping in Table 8 It is reminded that  
[image: image138.wmf]15

v

v

-

=

i

i

, i>15.

We can notice that variables v1, v10 and v15 are not used. Moreover, due to the small number of examples available the inner and outer borders coincide in classes 2, 3, 4 and 7.

It has to be reminded at this point that the formulas in the inner frontier come from processing the positive examples only while the formulas in the outer frontier come from the negative examples only. For producing the borders for each class the same mapping was used with different labellings each time according to the class being processed.

After being able to describe the 8 classes through the 15 propositional variables it was time to find which features these variables are related to. In order to do this a feed-forward network (with structure 96:25:15) was trained to reproduce the 96(15 mapping using the classical backpropagation for learning. After being successfully trained, the prunning process as described in section 4 started. Thus, a percentage of the weights of the network were removed and then the network was trained again. It was found that the network could be retrained even with only the 9% of its initial connections. This process was repeated two more times keeping 58 and 85 percent of the resulting network's connections respectively.

Thus, the minimal network that could reproduce the mapping had only 4.43% of the connections of the initial network. Tracing back the network from the output units (propositional variables) to the input units (96 elements responding to the 45 features) the relations which are presented in Table 11 were found.

Variable
Features

v_1
fruit_disc_type, leaf_surface, fruit_shape, leaf_shape, juvenile_leaf_colour

v_2
fruit_surface, *fruit_width, lateral_vein_visibility, petiole_shape, juvenile_leaf_shape, leaf_surface, bark_colour, fruit_shape, juvenile_leaf_arrangement, *infloresence_flower_number, leaf_apex_shape

v_3
lateral_vein_visibility, fruit_disc_type, juvenile_leaf_shape, leaf_surface, bark_colour, fruit_shape, juvenile_leaf_arrangement, juvenile_leaf_colour, leaf_apex_shape

v_4
fruit_surface, *fruit_width, lateral_vein_visibility, fruit_disc_type, juvenile_leaf_shape, leaf_surface, bark_colour, fruit_shape, juvenile_leaf_colour

v_5
fruit_surface, *fruit_width, lateral_vein_visibility, bark_colour, fruit_shape, leaf_shape, *leaf_length, leaf_apex_shape

v_6
lateral_vein_visibility, fruit_disc_type, petiole_shape, leaf_surface, bark_colour fruit_shape, juvenile_leaf_colour

v_7
lateral_vein_visibility, fruit_disc_type, juvenile_leaf_shape, leaf_surface, bark_colour, fruit_shape, juvenile_leaf_colour

v_8
fruit_surface, *fruit_width, lateral_vein_visibility, petiole_shape, juvenile_leaf_shape, bark_colour, fruit_shape

v_9
lateral_vein_visibility, juvenile_leaf_shape, bark_colour, fruit_shape, leaf_shape, juvenile_leaf_arrangement, leaf_apex_shape

v_10
-

v_11
small bark_colour, fruit_shape, *leaf_length, leaf_apex_shape

v_12
lateral_vein_visibility, juvenile_leaf_shape, bark_colour, fruit_shape, juvenile_leaf_arrangement, juvenile_leaf_colour, leaf_apex_shape

v_13
lateral_vein_visibility, petiole_shape, juvenile_leaf_shape, leaf_surface, bark_colour, *infloresence_flower_number

v_14
small fruit_surface, *fruit_width, lateral_vein_visibility, fruit_disc_type, juvenile_leaf_shape, leaf_surface, bark_colour, fruit_shape

v_15
-

Table 11: The relations between the 15 propositional variables and the input features describing the 5 species of eucalyptous and the 3 species of angophora.  Feature names preceded with a * indicate a numerical feature. Note that variables v_10 and v_15, which are not used in the formulas, are proved to have no relation with the features also.From the 45 available features of Table 7 only a subset of 3 numerical and 12 textual ones is used for defining all the propositional variables.

We can observe from Table 11 that the propositional variables are related with subsets of the available features with sizes varying from 4 to 11 features each. Moreover, only 15 features (3 numerical and 12 textual) out of the 45 available in total are really necessary in order to describe the plants. 

5.2 Emotional testbeds

The procedure we propose has the ambitious target of reproducing the essence of the brain evolution that human being did by accumulating experience during millennia. Such meaningful application will require a long, though feasible, task based on a rich and huge training set. However we challenged the procedure on a set of testbeds close enough to the goal of the PHYSTA project. 

A testbed was realized by King College of London [Fellenz et al. 2000] and consists of records of speach features extracted by the ASSESS system, a software designed and realized at Qub College of Belfast [Cowie and Douglas-Cowie, 1996]. Namely they refer to seven four second sentences, spoken by three subjects in a normal voice and with the six emotions Anger, Happiness, Sadness, Disgust, Surprise and Fear. Each sentence was broken up into four slices of equal length,  with small overlaps compensating for the different durations, resulting in 588 patterns (7 sentences x 4 slices x 7 emotions x 3 speakers). 6 patterns of happiness are missing, so the number of patterns avalaible is 582. The speech record consists of 73 features. It is often difficult to obtain a large dataset, so, to study the effect of the size of the training patterns upon the recognition in addition to the study of the perfomance for various classification models, two different repartitions were tested: first, the training set was obtained by removing, for all speakers, the patterns of the same 3 sentences that were used later in test set; second, just 2 sentences were removed from the test set. So in the first case, we had 336 patterns for training and 246 patterns for testing, while in the second case, we had 417 patterns for training and 165 for testing (the sentences with the missing patterns were affected in the test set). The performance of recognition are given in the Table 12. We can see the importance of the number of training patterns employed, the performance of the decision tree C4.5 by [Quinlan, 1993] are really improved by adding 81 patterns (i.e. in this case 24% more). The PAC meditation can manage with a small training set (note that a random classification for 7 classes gives 86% of errors). The global performance is obtained considering the average of the percentage of correct classification for each emotion  weighted by its number of patterns. The details of the correct classification for each emotion are given in the Table 13. The Table 14 gives the percentages of incorrect affectation to a specific emotion. The values reported in the Table 13 for the PAC meditation are the percentages of positive examples ouside the inner frontiers after 1 level of abstraction. The values reported in the Table 14 are the percentages of negative examples inside the outer frontiers. These are the worst cases because positive and negatives examples classified between the inner and outer fontiers of a class are considered as wrong classification but the limits between emotions are not strict. 

To illustrate the inner fuzziness of our classification task, we show the confusion matrix obtained from the perceptual evaluation of the sentences in a database of three emotions (approval, attention, prohibition) by seven Italians listeners (Table 16) [Esposito et al., 2000]. We can see that the confusion of the emotions by a system (here a TDNN) is incredibly close to the human confusion. 

In closer detail, a database of 504 utterances of infant-directed speech by parent was used. The recordings were made at the Interval Research Corporation (IRC), California, US, by Slaney and McRoberts (1998) and consists of sentences spoken by 12 parents (six males and six females) talking to their infants (from 10 to 18 months old). The sentences are divided in the mentioned emotional categories,  approval (212 sentences), attention (144 sentences), and prohibition (148 sentences). The speech signal was processed using two different algorithms: the Perceptual Linear Predictive (PLP) [Hermansky, 1990], and the  algorithm of Linear Prediction Coding (LPC) [ Rabiner, Jung, 1993]. From speech windows of 50 msec long 10 acoustic features have been extracted, that have been feed to two neural network models, a Simple Recurrent Neural (SRNN) network [Elman, 1991], and a Time Delay Recurrent Neural (TDRNN) network [Ström 1997]. 

Once the preprocessing algorithm was fixed, the experiments were first conducted on a SRNN and then on a TDRNN.  A training set of 276 (92 approval, 92 proibition, and 92 attentional sentences)  examples,  a validation set of 75 (25 approval, 25 proibition, and 25 attentional sentences), and a testing set of 153  (93 approval, 31 attention and 29 proibition) examples were used. Five sets of data (each one containing a training, a testing, and a validation set of the size described above) were created (in a random way) and the networks were trained 5 times on each data set with the aim of checking if a different weight initialization plays a role on the performance of the net. 

The same data sets were then used to train the TDRNN. 

In Table 16 we report the confusion matrix to better understand the real performance of the models, while in Table 15 we fix the global score of these models in comparison with a previous processing done by [Stanley and McRoberts 1998] using different features and different neural models.

A third testbed has been used by Nijmegen, the McGilloway data-base [Westerdijk, Gielen, 2000]. It consists of 195 records which were processed from speech recordings of 40 speakers which were asked to read 5 passages. Each passage corresponds to one of the five emotional states: Fear, Anger, Happiness, sadness, and neutrality. Five of the 5*40 possibilities are missing. A speech recording consists of 32 features. The data set was randomly split into 10 parts with which 10 experiments were performed. In each experiment, one part out of the 10 was used as a test set while the other 9 parts were used as training data.

Three classification algorithms were contrasted and tested. The first method, Support Vector Machines (see Schölkopf et al.), has empirically been shown to give good generalization performance on a wide variety of problems. In particular, SVMs show a competitive performance on problems where the data are sparse (many features, few data) and noisy as is the case with the ASSESS data-base. 

In Support Vector Machines one has the freedom to choose a similarity measure, which is a function which determines how similar two data examples are. In this study the authors tested two of these measures, namely a linear and a Gaussian similarity measure.

The second method, Generative Vector Quantization, has been developed recently by the KUN group (Westerdijk et al. 1999 and Westerdijk et al. 2000). It has been shown that this method gives a performance comparable with state-of-the-art classifiers (sigmoid belief networks, wake-sleep algorithm) on handwritten digit recognition. It outperforms standard methods such as nearest neighbour and back-prop on this problem. The purpose of GVQ is to give a clear understandable representation of the structures that are present in the data. GVQ explains data examples by simple compositions of elementary features. 

The third method is the default classifier, namely linear discriminants. In linear discriminants the classes are separated simply by linear planes. This method only outperforms more complex methods if the data are too noisy to reveal any `higher order’ structure (non-linear dependencies, higher order-correlations, etc.).

The data set was randomly split as described above. The authors performed some experiments with and without the gender feature to see if this information contributes to the discrimination of emotions. The average classification scores on the test are summarised in Table 17. The uncertainty values in the table are the standard deviations over the 10 experiments.

From these data it emarges that, apart the poor information provided by the speaker’s gender, increasing the complexity of a classifier has a negative effect on the test set score. In the analysis with GVQ we increased the number of features from 1 to 2. A GVQ model with only one feature is equivalent to linear separation. Including an additional feature allows a larger class of separating surfaces. As we see the test set error then increases significantly indicating that the model is overfitting the data. 

The highest score was obtained with linear discriminants. This method is closely related to a 1 feature GVQ model. The reason why linear discriminants achieve a better performance is that linear discriminants complexity is even further restricted by using a `weight decay parameter’. A weight decay parameter constrains the separating planes to be close to axis parallel.

Note that the success of linear discriminants compared with more complicated models looks like a drawback rather than a benefit. It means that the McGilloway data-base is too sparse, in the sense that there are too few data points described by too many features which effectively start to act as sources of noise, to reveal any higher order structure which can be used to discriminate between emotions.

A similar false good news occurred on the King College database when they processed data in a cross validation scheme. In this case the extremely good results derive from the fact that the three speakers have very similar patterns, thus if one of them has been already seen in the training set, the success of his classification in the test set is assured.

All these datasets look as preliminary testbeds to assess both the difficulty of the emotion recognition, in the scope of the PHYSTA project, and the efficacy of our procedure in respect to other existing subsymbolical or symbolical classifiers.

The general hints that can be drawn by the related numerical results are the following:

1. Recognizing emotion is a hard problem both for artificial systems and for human beings (see the first confusion matrix). It generally requires the processing of a huge number of parameters (O(100)) whose collection is very complex and time consuming, so that small databases are available in the literature and their reliability  is sometimes questionable. 

2. Thus we have many parameters and few examples, with the obvious result that we have poor generalization rates. Data concerning C4.5 application reveal the actual strong dependency of the generalization capability on the training set size: the error rate passes from 78% to 28% when the training set increases of 24%. Data concerning our method denote a better performance on negative examples, that are in a greater number, than on positive examples, that are 7 times fewer. This complies with theoretical bounds in Corollary 1.

3. Tables 15 and 16 show that a great improvement in the results may come from a suitable data preprocessing. Indeed PLP preprocessing has twofold effect of reducing of one magnitude order the number of features involved in the last line experiments, and of definitely increasing the classification score.

4. Error rates of our method are better than those of its direct competitor C4.5, and we can expect that an improvement similar to the latter's can be achieved by a training set size increase. In addition we mention that our method provides fuzzy boundaries of the single emotions that can be clearly isolated. In greater detail, the percentages refer to either positive points that fall outside the positive border or either negative points that fall inside the negative border. This means that within the misclassified points we can identify unsharply classified ones that fall in the gap between inner and outer border. 

5. Lowering the weights of these points should slightly ameliorate the above percentages. As a matter of fact these values refer to borders obtained at the second abstraction level, where a great part of the gap existing at the first level is gnawed by the refinement of the border expressions. 

6. We also note that, as mentioned in section 5.1, the supports of the formulas describing single emotions can overlap, implicitly identifying fuzzy boundaries  between emotions, a feature that means losing the sharpness found in other classifiers such as SVM or C4.5, but is closer to the classification ability of our brain (see Table 16). 

7. Finally, we must consider that our procedure is an open recipe. Thus, any sagacity shared with other methods is welcome. For instance we could assume as a first mapping from feature to symbols the one implicitly provided by the binary decision tree built by C4.5 algorithm. This could constitute a former ‘prejudice’ of our procedure, susceptible, however, to be corrected by the subsequent steps, as detailed in section 4.1.3.

7 Emotions , 73 features, 582 patterns

Methods
Training conditions
Test errors

 C4.5
5 sentenses
27.9 %

 C4.5
4 sentenses
78,0 %

 PAC meditation

42.9 %

Table 12: Classification errors according to the repartition between the training and the test sets.

Methods
Test errors ( class(x) = C but f(x) ( C)


Categories
Global


Neutral
Happy
Angry
Sad
Disgusted
Surprised
Fearful


 C4.5
83.3 %
90 %
66.7 %
91.7 %
66.7 %
91.7 %
58.3 %
78 %

PAC med.
50 %
50 %
50 %
50 %
25 % 
50 %
25 %
42.9 %

Table 13: Confusion matrix of the correct affectation to a specific class (f(x) is the classifier output).

Methods
Test errors ( class(x) ( C but f(x) = C)


Categories
Global


Neutral
Happy
Angry
Sad
Disgusted
Surprised
Fearful


 C4.5
81.8 %
88.9 %
66.7 %
50 %
83.3 %
80 %
73.7 %
78 %

PAC med.
50 %
31 %
33.3 %
45.8 %
41 % 
50 %
16.2 %
38.2 %

Table 14: Confusion matrix of the incorrect affectation to a specific class.

3 Emotions , 10 features, 276 patterns

Methods
Test errors


( class(x) = C but f(x) ( C)
( class(x) ( C but f(x) = C)

 SRNN
40.3 %
40.6 %

 TDNN
35.3 %
26.6 %

Table 15: Classification errors obtained on the testing data by the SRNN and TDNN.

TDNN (humans)
Approval
Attention
Prohibition

Approval
74% (79%)
15% (14%)
11% (6%)

Attention
15% (17%)
73% (71%)
12% (11%)

Prohibition
12% (8%)
14% (24%)
74% (68%)

Table 16: Averaged confusion matrix obtained from TDNN and the perceptual evaluation of the sentences in the database by 7 Italian listeners (in parenthesis).

5 Emotions, 32 features, 195 patterns

Methods
Test errors


no gender
gender

 Linear SVM
79 % ( 5%


 Gaussian SVM
48 % ( 10 %
49 % ( 10%

 GVQ  (1 feature)
57 %


 GVQ  (2 features)
66 % ( 9%
64 % ( 9%

 Linear discriminants
45 % ( 8%


Table 17: Classification errors  with and without gender information.

5.3 Social Dinner Evaluation

We consider a toy example with the following scenario: Four people are sitting together in a social dinner. These people are a science luminary, a research chief, a serious researcher and a (general purpose) philoshopher. A number of directly measurable features and a number of propositional variables expressing indirect characteristics associated with each subject are used to discribe the dinner. After examining a number of cases characterized as examples of sucessful dinners (positive examples) and a number  of examples characterized as rather unsucessful ones (negative), we are after the “recipe” of a sucessful dinner in terms of the used variables.

We split the whole run (from the sampled data to the formal representation of the underlying rule) in two phases. The first one aims at defining a set of Boolean variables whose values are not in conflict with the sampled data (namely a Boolean vector cannot describe two examples belonging to different classes). For the above mentioned case the Boolean variables which are employed refer to characteristics such as the conversation interest, the amusement, the socialization, the alcoholic rate and the food and service satisfaction for each person. These variables are set after examining the mention of directly measurable features such as the speaking loudness, the food consuption, the lips rise etc.

In greater detail, we associate a feature vector of 24 elements, the six features reported in Table 18 referred  to each of the four guests, to any example of social dinner. Like in the previous example we create 29 dinner examples by picking uniformly at random the feature values from the ranges set in the table.

In this testbed we also associate to the example a set of 24 propositional variables (six for each guest) that we assume temptatively known. The assignments to these variables indeed are set manually after examining each dinner example and taking note of the person they were referring to. In the same way we classify the dinner example as successful or not.

Here we start training a 24:40:24 network using error function E1 in equation (21) (supervised mode) for having the former mapping. Then, on the basis of feedbacks coming from the symbolic module we retrain the network with the learning rule (eq. 23) that gently shifts to the unsupervised mode as far as the number of these iterations increases.

In the previous sections, we saw that the subsymbolic module manages well the components of the error function in the direction of edge pulling the values of the new variables the network is creating to comply with the feedback directions. Thanks to this new variables we obtain a fitness increase (antifitness decrease) but this trend is still weak and unstable. A similar waving descending curve was found in Figure 20 in the symbolic management of the fitness.


Feature name
Type
Range

Propositional variables


speaking_loudness
continuous
5.5:72 dB

1. CONVERSATION_INTEREST

Directly
speaking_subject
scalar
1=fancy, 6=work

2. AMUSEMENT

Measurable
lips_rise
continuous
1=smile, +1=sad

3. ALCOHOLIC_RATE

Features
cheeks_colour
scalar
1=grey, 6=red

4. SOCIALIZATION


food_consumption
Continuous
0:2.0 Kg

5. FOOD_SATISFACTION


forks_used
scalar
1,2,3

6. SERVICE_SATISFACTION

Table 18: The features and propositional variables used for the social dinner case.

For clarity reasons the graph in Figure 20 refers to a sharp abstraction story. Its unsharp version is the following: starting from the initial mapping all 24 propositional variables were used and the frontiers created can be seen in Table 19.

Border
0_level formulas

Inner
v15v18v23v24+v18v22v24+v14v19v23v24+v15v17v18v24+v14v17v18v20+v14v18v23v24

Outer
(v18+v23)(v20+v24)(v17+v22+v23)(v18+v24)(v14+v18)(v18+v19+v21)(v14+v15+v22)(v17+v24)

Table 19: tab: The 0_level inner and outer borders describing a successful social dinner when all 24 propositional variables are used.

We noticed that even though all variables were available only a subset of those referring to the third and fourth person were really used. We can see in the first column of Table 20 their indices and the number of times they were used in building the frontier. The last parameter highlights that variable 21 is used once. Thus we decided to rerun the first PAC meditation level after removing the latter together with all unused, and obtained the formulas in Table 21, where the variable indices have relative values linkable to the absolute ones through the following Table 20.


24 variables
9 variables
7 variables

Science luminary


1

2

3

4

5

6
1

2

3

4

5

6
-

-

-

-

-

-
X

X

X

X

X

X







Research

Chief


7

8

9

10

11

12
7

8

9

10

11

12


-

-

-

-

-

-


X

X

X

X

X

X









Serious researcher


13

14

15

16

17

18


13

14

15

16

17

18


-

5

3

-

4

9


X

X


1

2

3

4


5

3

4

7



1

2

3

4


2

2

2

3




Philosopher (General purpose)


19

20

21

22

23

24
19

20

21

22

23

24
2

2

1

3

5

8


X
5

6

7

8

9


2

2

3

4

7


X

X
5

6

7
2

3

3


Table 20: The propositional variables used in each experiment, the person they refer to and the number of their occurencies in the produced frontiers. Variables that were removed in the succeeding experiment are noted with an x. The indices refer to relative values. The absolute values exist in the corresponding row at column 1.

Border
Border0_level formulas

Inner
v2v4v8v9+v4v7v9+v1v5v8v9+v2v3v4v9+v1v3v4v6+ v1v4v8v9

Outer
(v3+v7+v8)(v1+v4)(v4+v5)(v1+v2+v{7)(v3+v9)(v6v9)

Table 21: The 0_level inner and outer borders describing a successful social dinner when 9 propositional variables are used.

We obtain a more concise set of frontiers still consistent with all examples. In an effort to reduce the complexity of the frontiers and in line with our mentioned approach to fuzziness we remove the propositional variables which were less used, namely those of index 5 and 6. The produced frontiers (Table 22), now using only 7 propositional variables, are very simple and susceptible of a semantic interpretation.

Border
Border0_level formulas

Inner
v2v4v6v7+v5v6v7+v1v3v4

Outer
(v3+v6)(v4)(v1+v2+v5)(v7)

Table 22: The 0_level inner and outer borders describing a successful social dinner when 7 propositional variables are used.

However, simplicity comes at a cost. Indeed with these frontiers we have the occurrence of inconsistencies in the classification. Namely, 2 of the 9 positive examples are classified as negative and 4 of the 20 negative examples are classified as positive. These inconsistencies are recovered by a fuzzy issue of the formulas. Hence, if we assume that variables v4 and v7 are not sharp, we can imagine that their assignments in contrast with the values verifying or falsifying formulas locate the related examples in a fuzzy contour of these formulas. Namely, for the inner border we obtain a minimal contour substituting both v4 and v7 with v4v7, while the maximal contour is exactly represented by the actual inner  border. Similarly, we obtain a maximal contour for the outer border by substituting both v4 and v7 with v4+v7, while the minimal contour is exactly represented by the actual outer border. Using these broader borders (that leave a geater gap between them) we obtain at the next abstraction level the new borders reported in Table 23. The simplicity of formulas describing them allows us a plausible reading of the formal description of a social dinner, at least as it emerges from examples (i.e. from the mental schemes of the people that labelled these examples).

Border
1_level formulas

Inner
ab+cde+def

Outer
d*(c+b+f)*e

Table 23: The 1_level inner and outer borders describing a successful social dinner when fuzzy frontiers are used.

Thanks to our fuzzy interpretation of the example at the former level, the formulas do not denote now any inconsistency (considering that a is included both in d and in e). In essence, we can say that a successful dinner depends on six properties (one for each hyper-variable) that are identifiable with:

a. philosopher satisfaction on eating (food and service). 

b. dinner hilarity (either philosopher socializes or serious researcher is drawn relaxed by the alcohol).

c. Serious researcher is relaxed per se (either because amused or because drunked).

d. Good fod (either philosopher or researcher got a good food). 

e. Good service (either philosopher or researcher appreciate the service).

f. dinner amenity (similar to b., but now the researcher is really amused).

Then we see that sufficient conditions for a successfull dinner are:

· That the dinner is amene, with good food and service.

· In case we do not appreciate the service serious researcher must suppere with his relaxed behaviour.

· Other scenario is the philospher is satisfied and involves in his satisfaction also the researcher.

On the other side necessary conditions are reached when we have good food and service and one of the remaining properties is verified, disregarding the hilarity. 

6 Conclusions and open points

We propose a theoretical framework for a subsymbolical-symbolical processing of natural signals that consists in a general procedural framework that proved feasible in a series of meaningful, though simple, numerical examples. 

Without any pretense of exhaustiveness we point out the following distinguishing features of this framework in concern of a learning task where the goal function is almost totally unknown:

1. The procedure is expressly designed for a learning process where new formal statements on the phenomenon in hand are joining time to time the current interpretation of our observations.

2. The procedure is extremely general and open. We just state some rules that guarantee an efficiency in data processing that we call absence of information waste. At the same time we identify in principle learning with data compression through consistent formulas. As is well known, any consistent formula is equivalent to other in PAC-learning theory, thus living room for a plenty of special learning preferences stated by the user. This room is spanned by a set of free parameters.

3. We use to learn the very natural notion of boundaries of the goal function. This provides a good rationale for the notion of fuzzy sets, the results of which do not contrast with the notion of probability. The goal of PAC learning procedure is to find a hypothesis on which a confidence interval can be stated for the error probability. The boundary of this hypothesis spreads into a gap between a minimal and maximal version of it, where this gap is the support of the fuzzy part of the hypothesis. 

4. The integration between symbolic, subsymbolic, fuzzy and arbitrary aspects of learning is completely visible to the user that can manage this process in an express way. 

5. A reliable communication is stated between the symbolic and subsymbolic part of the procedure through feed-back functions that operate in non trivial ways. 

6. The procedure runs in polynomial time to learn through non proper hypotheses. 

7. The readability of the produced formulas is high on simple study cases, while richer training sets are required for more complex applications. 

8. The generalization capability of the produced formulas are in line with other methods, with the additional benefit of having natural formal descriptions of the concepts, contemplating fuzzy boundary zones representing instances difficult to classify as it generally happens in real world cases. 

9. In spite of some hardness of the underlying theory, the procedure results intuitive to the users and enjoys, however, a unifying theoretical background
What we presented here is evidently a starting point. Many operational problems are still opened, but they do not seem to be insurmountable barriers. Rather their solution requires still material time to both write-down more suitable variants of the actually available code, and devising special triggering of the free parameters and feed-back functions in relation with the PHYSTA testbed. 
References

Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723, 1985.

Apolloni B., Baraghini F. , Palmas G, PAC-meditation on Boolean formulas, submitted (2000).

Apolloni B., Biella G.,  Stafylopatis A., From Synapses To Rules: The Self-Referential Perspective, Proc. IMACS 99, July 1999.

Apolloni B., Chiaravalli S., PAC Learning of concept classes through the boundaries of  their items. J. Theoretical Computer Science, 172, 91-120, 1997.

B. Apolloni, Gentile C., P-sufficient statistics for PAC learning k-term-DNF formulas through enumeration. J. Theoretical Computer Science 230, 1-37, 2000.

Apolloni B , Iannizzi N., Malchiodi D.,Algorithmic approach to statistical inference of functions, in preparation, 2000.

Apolloni B., Malchiodi D. , Gaining degree of freedom in subsymbolical learning , Theoretical Computer Science, to appear on J. Theoretical Computer Science , 2000.

Apolloni B., Mauri G. , Computational aspects of learning in neural networks. Proc. International Conference on Neural Networks: biological computers or electronic brains. 37-48, ISBN 2-287-00051-8 Springer Verlag, 1990.

Apolloni B., Orovas C., Palmas G., Hybrid Hierarchical Steps and Learning by Abstraction for an Emotion Recognition System, Proc. IMACS 99, July 1999.

Apolloni, B., & Ronchini, G. , Dynamic sizing of multilayer perceptrons. Biological Cybernetics, 71, 49-63, 1994.

Bersini H, A cognitive model for goal-oriented automatisms and breakdowns, Proc 8th SSAISB conference on Artificial intelligence, 1990.

Blumer A., Ehrenfeucht A., Haussler D., Warmuth M.,  Learnability and the Vapnik–Chervonenkis dimension. J. ACM 36, 929-965, 1989.
Brooks R.A. , A robust layered control system for a mobile robot, Journal of Robotics and Automation, 2, 14-23, 1986.

Cowie R., Douglas-Cowie E., Automatic statistical analysisof the signal and prosodic signs of emotion in speech. Proc. Fourth Int. Conf. On Spoken kanguage proc., ICSLP’96, PA, (1996), 1989-92. 

Efron B., Tibishirani R. J. An introduction to the boostrap. Chapman and Hall New-York, 1993.

Elman J. L. Distributed representation, simple recurrent neural networks, and grammatical structure. Machine Learning, vol.7, 195-225, 1991.
Esposito A., Versano G., Apolloni B., Analysing emotional features, work in progress, 2000.

Fellenz W.A., Taylor J.G., Cowie R., Douglas-Cowie E., Apolloni B., Gielen S., Kollias S., Extraction of Rules Emotion Recognition from Speech. Submitted (2000).

Flora of Australia Volume 19, Myrtaceae, Eucalyptus, Angophora, Australian Government Publishing Service, Canberra, 1988. http://kaos.erin.gov.au/life/species/species_flora.html.

Freund Y., Boosting a weak learning algorithm by majority, Information and Computation, 121(2), 256-285, 1995.

Freund Y., Schapire R.E., Experiments with a new Boosting Algorithm (Machine Learning: Proceedings of the Thirteen International Conference, 1-9, 1996.

Garey M.R., Johnson D.S., Computers and intractability, Freeman, 1979.

Haugeland J. The nature of plausibility of cognitivism, Behaviour and Brain Science 2, 215-260, 1978.

Hermansky H. Perceptual linear predictive (PLP) analysis of speech. JASA, vol. 87(4), 1738-1752, 1990.

Kearns M.J., Vazirani U.V., An Introduction to Computational Learning Theory, The MIT Press, Cambridge, 1994.

Knoblock C.A., Generating Abstraction Hierarchies:An Automated Approach to reducing Search in Planning, Kluwer Academic Publishers, Boston, 1993.

Murata, N., Yoshizawa, S., & Amari, S. Network information criterion - Determining the number of hidden units for an artificial neural network model. IEEE Transactions on Neural Networks, 5, 865-872, 1995.

Pitt L., Valiant L. Computational limitations on learning from examples. J. ACM 35, 4, pp. 965-984, 1988.

Rabiner L. R., Juang B. H. Fundamentals in speech recognition, Prentice Hall, 1993.
Redner R. A., Walker H. F. Mixture densities, maximun likelihood, and EM algorithm. SIAM Review, vol.26, 195-239, 1984.

Rumelhart D.E., Hinton G.E., Williams R.J., "Learning internal representations by error propagation". In Rumelhart D.E., McClelland J.L., editors, Parallel Distributed Processing: Exploration in the microstructure of cognition; Vol. 1: Foundations, Cambridge, Massachusetts, The MIT Press, 1986.

Schapire R.E.,The strength of weak learnability, Machine Learning 5, 197-227, 1990.

Schölkopf B., Burges C.J.C., Smola A. J., Advances in Kernel Methods: Support Vector Learning, MIT Press, Cambridge MA, 1999.

Slaney M., McRoberts G., Baby ears: a recognition system for affective vocalizations. In Proceedings of ICASSP 1998, Seattle, WA, May 12-15, IEEE press, 1998
Smolensky P. Information processing in dynamical systems: foundations of harmony theory, in  Rumelhart D.E., Parallel Distributed Processing, Vol 1, 194-218, Cambridge, MA:MIT Press, 1986.

Solomonoff A., A formal theory of inductive inference. Information and Control, 7, 1–22 and 224–254, 1964.

Ström N. Sparse Connection and pruning in large dynamic artificial neural, 1997

Sun R., Integrating rules and  connectionism for robust commonsense reasoning, Wiley N.Y. 1994.

Sun R. and Bookman L.A.., Computational architectures integrating neural and symbolic processing, edited by R. Sun and L.A. Bookman. Kluwer Academic Publishers, 1995.

Tickle A. B., Andrews R., Golea M. and Diederich J, The truth will come to light: Directions and Challenges in extracting the knowledge embedded within trained artificial neural networks, IEEE Transactions on Neural Networks 9, 1057-1068, 1998.

Valiant L.G., A theory of the learnable. Communication of ACM  27, 1134–1142, 1984. 
Vapnik V., The nature of statistical Learning Theory, Springer, New York, 1995. 

Veschure P.F.M.J., Taking connectionism seriously: the vague promise of subsymbolism and an alternative, Proc. 14th annual conference of the Cognitive Science Society, Hillside, N.J.: Erlbaum, 653-658, 1992.

Wegener I., The complexity  of Boolean Functions, Teubner and Wiley, 1987.

Westerdijk M., Barber D., Wiegerinck W., Generative Vector Quantisation, ICANN 99, Vol. 2, pp. 934-939, 1999.
Westerdijk M. and Gielen S., personal communication, 2000.

Westerdijk M., Wiegerinck W., Classification with Multiple Latent Variable Models using Maximum Entropy Discrimination, Proceedings of the 17th international conference on Machine Learning, 2000.
WilksS.S., Mathematical statistics, John Wiley, New York, 1962.

� Technically, this condition is assured, from different viewpoints, by properties of well definedness [Blumer et al., 1989] or exhaustiveness  [Apolloni & Chiaravalli, 1997].


� c: X � {0,1} is the characteristic function of c; thus, by definition, c() = 1 if and only if  is an element of c.





PAGE  
72

[image: image140.png]Qo

AR
4

"RAINI NG AND MOBILITY OF RE SEARC HERS



_1021121614.unknown

_1021121632.unknown

_1021121643.unknown

_1021121651.unknown

_1021121656.unknown

_1021125975.unknown

_1021122148.unknown

_1021124761.unknown

_1021124827.unknown

_1021121657.unknown

_1021121654.unknown

_1021121655.unknown

_1021121652.unknown

_1021121647.unknown

_1021121649.unknown

_1021121650.unknown

_1021121648.unknown

_1021121645.unknown

_1021121646.unknown

_1021121644.unknown

_1021121636.unknown

_1021121639.unknown

_1021121641.unknown

_1021121638.unknown

_1021121634.unknown

_1021121635.unknown

_1021121633.unknown

_1021121623.unknown

_1021121628.unknown

_1021121630.unknown

_1021121631.unknown

_1021121629.unknown

_1021121625.unknown

_1021121626.doc










j







 = 







1-2















(







s







pj







)







p















r












_1021121624.unknown

_1021121619.unknown

_1021121621.unknown

_1021121622.unknown

_1021121620.unknown

_1021121616.unknown

_1021121617.unknown

_1021121615.unknown

_1021121594.doc


LEARNING







SYMBOLIC







SUBSYMBOLIC







LABELED SAMPLE







TRAINING SET







CLASS OF HYPOTHESES







FAMILY  OF NETS 







OF GIVEN LAY-OUT







SINGLING-OUT OF  THE







HYPOTHESIS







TRAINING OF THE NET







ACHIEVEMENT OF THE







PRECISION TARGET







GENERALIZATION












_1021121605.unknown

_1021121609.unknown

_1021121612.unknown

_1021121613.unknown

_1021121610.unknown

_1021121607.unknown

_1021121608.unknown

_1021121606.unknown

_1021121600.unknown

_1021121602.unknown

_1021121604.unknown

_1021121601.unknown

_1021121598.unknown

_1021121599.unknown

_1021121597.unknown

_1021121585.unknown

_1021121589.unknown

_1021121592.unknown

_1021121593.unknown

_1021121591.doc


Output







Hidden







 







Hidden







 







Input







Layer  L







Layer  L-1







Layer  1







Layer  2







OUTPUT     PATTERN







INPUT     PATTERN
















_1021121587.unknown

_1021121588.unknown

_1021121586.unknown

_1021121579.unknown

_1021121581.doc


 















 












_1021121583.unknown

_1021121580.unknown

_1021121577.unknown

_1021121578.unknown

_1021121575.unknown

