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1 Introduction

The PHYSTA project aims to develop hybrid systems that are capable of understanding a person’s emotional state on the basis of audio information (primarily speech) and video information (primarily images of the face). In effect, the project has two streams – one concerned with the development of suitable hybrid technologies, the other concerned with the techniques and resources needed for the application (i.e. emotion understanding).

This report deals with the penultimate phase of development in the second stream. The techniques and resources relevant to emotion understanding are approaching their final form, and exploratory work has been carried out on their interaction with neural nets that use subsymbolic representations to learn classification rules. The final phase of work on the application will bring databases to full scale, make final refinements to feature extraction systems, and connect them to the full hybrid inference system.

The report first describes key background concepts, and then describes the main areas of progress in turn. The background concepts have for the most part been set out in previous reports, but they are summarised here so that the report can be read as a self-contained document.

1.1 Emotion understanding by machine: a conceptual framework

The most familiar ways of thinking about emotions, and describing them, do not necessarily provide the most appropriate framework for the PHYSTA project, or for automatic emotion understanding in general. Earlier reports have set out the framework that we have developed. This section summarises the main points, and brings them up to date where our thinking has developed since they were prepared.

1.1.1 Ecological validity 

The single most important consideration for the project is that it is committed to registering emotional states that are likely to occur in everyday settings and to be practically significant. An immediate result is that we have tried to avoid relying on material that is either simulated or selected for conformity to a priori expectations. That has radical implications for database development – see section 3 below. Less direct implication are drawn out later in this section.

1.1.2 Emotions and emotional states

William James, one of the pioneers of research on emotion, pointed out that the word ‘emotion’ was likely to cause problems if it was treated uncritically. It is capable of taking on various meanings, which are essentially different, and failure to separate them produces confusion.

Modern psychology has tended to highlight one type of meaning. It uses the term ‘emotion’ to refer to a distinctive and relatively short-lived type of episode in which a combination of effects occur together – involving feelings, somatic changes, and cognitive adjustments. We have referred to that kind of episode as fullblown emotion.

Fullblown emotion is theoretically interesting, but an automatic system that could only respond when fullblown emotion was present would be of very limited value. For instance, a system is much more likely to be useful if it can detect warning signs that a person may be heading towards fullblown anger than if it can only respond when that point is reached. An additional problem is that fullblown emotion is relatively uncommon, and eliciting it presents practical and ethical difficulties. Hence attempting to study fullblown emotion tends to push researchers towards using acted material, and its validity is problematic. For those reasons, we have not restricted the goals of the project to recognising emotion in the strong sense of fullblown emotion.

The term ‘emotional state’ is a useful way of expressing what have set out to study. It is generally accepted that people’s mental state is very often coloured to a greater or lesser extent by some form of emotion. The only dispute is whether some degree of emotionality is always present. We assume that people spend a large part of the time in a state that can be considered emotionally neutral for most practical purposes. The general aim of the project is to detect situations where a person’s emotional state is markedly different from neutrality, and to describe the difference.

1.1.3 Classification and understanding

Conceptions of emotion are linked to the way they are described. If one is dealing with fullblown emotion, then it is reasonable (up to a point) to assume that description is a fundamentally simple task. Descriptions only need to be labels that indicate which of the relatively small number of fullblown emotions is present.

Emotional states are much more diverse, and they pose a different challenge. Natural languages contain a very large number of words that describe emotional states – our earlier reports cite references that identify several hundred. There is no prospect of developing systems that learn to divide emotional states into that number of discrete categories. Nor would it make sense to take that approach, because it is clear that the domain of emotional states does not consist of discrete categories. Instead it is underpinned by more general frameworks, which research has tried to capture in various ways - sometimes in terms of continuous dimensions, and sometimes in terms of logical trees. The emotion words used in everyday language correspond to regions within those underlying frameworks.

If machines are to distinguish emotional states with even a fraction of the subtlety that people achieve, the only obvious route is to develop representations that capture – at least approximately – the kind of underlying framework that people use to understand emotional states. Emotion labels will need to be used, but they will identify regions in an underlying representation rather than being the sum total of the description that is generated. That is why we have referred to the goal of the project as emotion understanding by machine.

Emphasising understanding has another layer of implications. It acknowledges the importance of abilities that are not automatically associated with classification per se. They include

· Explanation A system that understands emotion should be able to explain why it has reached a particular conclusion. That typically involves access to intermediate states, and ability to give them labels which have a shared meaning.  That might, for instance, registering that a particular sound pattern was decisive in concluding that a person was trying to concealing sadness, and that it was a sob.

· Prediction A system that understands emotion should be able to anticipate, for instance, that a person who is angry may well make violent actions. That is not separate from recognition, because confirming a prediction is often what seals judgements about emotional states.

· Refinement There may be various reasons to amend an initial classification. One is a request to distinguish what is known from what seems likely but not certain. Another is incoming information that casts doubt on some aspects of an earlier judgement, but not others. Understanding implies ability to partition information in ways that support these kinds of revision.

The PHYSTA project cannot expect to produce a system which understands emotion in the full sense outlined above. However, it has undertaken work aimed at clarifying the kind of representation that could underpin a genuinely rich understanding of emotion (see section 5). The hybrid systems that are under development have some of the characteristics needed to generate a multi-level representation of the kind that such an understanding would need to involve. It remains to be seen how well the two streams converge at that level.

2 First level databases

This section describes the recordings, audio and video, that have been assembled by the project team. They will provide the material on which the system is trained and tested.

2.1 Pre-existing material

Before the project database was completed, some video material was needed to start implementing and testing the procedures of facial features detection and emotion recognition. Some material found on the Web proved very useful, especially for first developments and trials, because it has been gathered under well controlled and consistent conditions such as lighting, scaling, face centering and orientation, emotions represented, etc... The expressions lacked naturalness, as they were evoked artificially and exaggerated. However ecological validity was not a concern and the homogeneity of this preliminary material was helpful at this early stage. Out of the material listed in the PHYSTA report “Test Material Format and Availability”, the following has been used:

-Ekman & Friesen, (1978) data: The classic collection of photographs showing facial emotion. It is the natural reference source for computational research on static visual indicators of emotion. The 110 pictures (size 320 x 480) cover the neutral state and the expressions of smile, sadness, anger, surprise and disgust of 16 actors.

-MIT data (ftp://whitechapel.media.mit.edu/pub/): Twenty sequences of various lengths, from neutral to the apex, covering the expressions of smile, anger, disgust, raise brows and surprise, adding up to 212 frames. Having whole sequences rather than static pictures was necessary to go from the static to the dynamic approach and use the changes in the face rather than its general appearance.

-Stirling University data (http://pics.psych.stir.ac.uk/cgi-bin/PICS/pics.cgi) are good quality, well-controlled and standardised images, useful for the first tests regarding facial feature extraction.

-ORL data (ftp://ftp.orl.co.uk:pub/data/) does not cover any specific expressions but varies some basic elements that can cause problems for the localisation of features in the face (lighting conditions, glasses, facial hair, etc...), so it was used to develop and test the facial feature extraction procedure.

-CMU image set contains pictures of 20 different males and females. There are 32 different images in 3 different resolutions (maximum size120x128) for each person showing happy, sad, neutral, and angry expressions, and looking straight to the camera, left, right, or up. The images with the highest resolution and straight facial orientation were normalized and cropped by a multi-scale head search, resulting in 77 face images of size 35x37. Four persons were excluded from the data due to a missing expression in the data-set or a failure of the normalization procedure to extract the head at the appropriate scale.

2.2 The main database

The PHYSTA project requires audiovisual recordings of emotional material from which features can be extracted. We expected that suitable material would be available in existing databases. In fact, very little suitable material was already available. There are databases of separate audio and facial material that involve emotional expression, but there does not appear to be a substantial audiovisual database that contains emotional material. Hence it became necessary to assemble out own database. The nature of the database has a major bearing on issues of feature extraction.

2.2.1 Guiding principles

The approach that we adopted is ecological, i.e. we set out to collect examples of vocal and facial signs of emotion as they occur in real life situations. More specifically, we were guided by three main considerations:

1. Genuine emotion Our core decision was to use material generated by people experiencing genuine emotion in the course of a genuine interaction. A large proportion of research on emotion uses material in which actors simulate emotional speech or facial expressions. That material cannot be a sufficient basis for conclusions about the expression of emotion. At the very least, proposals derived from it need to be validated against genuinely natural material. Hence, natural material needs to be assembled sooner or later.

2. Gradation Long standing research traditions direct attention towards archetypal emotions – unrestrained fear, happiness, etc.. However, archetypal emotions form a very small part of naturally occurring emotional behaviour. Hence ecological validity entails sampling situations where emotion is mixed or controlled in the ways that typically occur in everyday life.

3. Richness Research tends to deal with the expression of emotion in one modality at a time – audio or facial. However emotional expression is typically extended both in time and in modality, in the sense that vocal expression is linked to facial expression, gross gestures (‘body language’), and verbal content. Hence ecological validity entails collecting samples which make it possible to study whether those elements are effectively independent or interactive, and how they evolve and cohere in time. 

2.2.2 Sources

We explored two main sources. First, we made our own recordings. Second, we recorded extracts from selected television programmes. 

The prime attraction of making our own recordings was the prospect of controlling the material, both technically (e.g. in terms of camera position) and in terms of content (e.g. to obtain a balanced set of states for each speaker). The general approach was to record people who knew each other well talking about emotive issues. We tried two versions of the approach.

In the first version, we asked postgraduate students who were on familiar terms with each other to decide on a few topics that provoked strong feelings, and then to come into a television studio and discuss them. This was expected to produce displays of negative emotions in an interactive context. The situation was set up for three students at a time – one acting effectively as a chair, with express instructions to get the other two ‘going’. We recorded three groups of this type. The approach was not taken further because subjects’ behaviour was generally very constrained. For example, subjects expressed very negative attitudes, but smiled throughout.

In the second version, we made audiovisual recordings of one to one interactions involving a researcher with fieldwork experience and a series of colleagues and friends. Each session lasted about1-2 hours. The aim was to cover topics that would elicit a range of emotional responses (i.e. active positive emotion, active negative emotion, passive positive emotion, passive negative emotion). Fieldwork techniques were based on standard procedures in sociolinguistics. In particular, care was taken over three issues. First, the physical setting was made as informal as possible (by use of physical props such as coffeee table, unobtrusive wall mounted cameras). Second, recordings were long (sociolinguistic research shows that even in formal situations, subjects relax after an hour and speak more freely). Third, the interviewer used prior knowledge of each subject to tailor the conversation. Each interview session followed the same broad pattern. The interviewer started with fairly neutral topics, moved to positive topics and finally to negative topics.

Some of the material obtained from that approach was judged useful, but it was almost all mild. Even when subjects were well known to the interviewer, and discussing highly charged experiences, they rarely showed dramatic signs of emotion.

For television material, we began by watching a range of television programmes over a period of several months, and eventually identified a few programme types that were potentially useful. All of them dealt with real interactions rather than acted material. The programme types were (i) chat shows, (ii) religious programmes (iii) programmes tracing the life of real people over time (iv) current affairs programmes. 

Chat shows provided the most obviously emotional material, though the emotional range tended to be limited to negative emotions. They typically dealt with an emotive situation or issue, such as divorce, death, lost relative, or drugs, with an audience composed of people who had direct experience of the particular type of situation or issue. We excluded programmes where we believed there was an element of ‘staging’. The two programmes that we finally recorded most of our material  from were Trisha (ITN) and Kilroy (BBC).

Religious programmes were often a source of positive emotion. They were used as a counterbalance to the negative emotions expressed in the chat show data. Our best source here was the BBC 1 programme, ‘Songs of Praise’. This weekly programme moves around the country, and people in different regions are recorded coming together to sing hymns. Usually in between the hymns there is an interview with the presenter in which a member of the local community is interviewed. The member of the community has often had some special emotionally charged experience . It is usually a positive experience often attributed to religious faith. The tone of these interviews is often positive, sometimes exuberant and sometimes tranquil.

Two other television sources, programmes tracing the life of real people over time and current affairs programmes were also used. BBC Panorama was a useful current affairs programme which gave some quite intense material related to deaths resulting from food poisoning. The BBC  series ‘The Village’ traced the daily life of villagers in a particular area over a long period of time, and occasionally this gave emotional material of both positive and negative nature, e.g. losing one’s job, getting a new house.


A selection was made from both types of source. Out of a three month period, 90  television broadcasts were identified as containing usable material. Within each of these broadcasts, there was on average one episode that could be described as strongly emotionally marked. From a total of 20 interviews, 10 were identified as containing usable material. Each on average contained 3 or 4 episodes that were regarded as being at all emotionally marked.


This is a small return from a large amount of material, and that makes a point worth noting. It is that archetypal emotions are a rare phenomenon. There are two related observations here. First, displays of intense emotion are rare. Second, clear cut examples of ‘pure’ primary emotions are not as common as one might think: we found that anger and sadness, for example, often seemed to combine. Those are significant points if we are interested in systems that can recognise naturally occurring emotion. They should not be designed on the assumption that emotion will generally consist of archetypal extremes, or even approach them.

2.2.3 Selection of clips

‘Clips’ were extracted from the selected recordings. The selection was made on the basis of the ecological approach outlined earlier and constraints concerned with the practicalities of analysis.

The main target was examples of strong emotion with a reasonably consistent character. However, weaker and mixed emotional states were also included. Clips were long enough to contextualise the episode and to reflect how the emotional state developed over time. Each clip contained both audio and visual material for the selected person and had at least some shots where the two modes co-occurred. Each emotional clip was paired with a comparatively neutral clip for the same person. Where available, more than one emotional clip was selected for the same person.

The database currently contains material from a total of 100 people, with at least one emotional and one comparatively neutral clip for each, giving a total of 239 clips. Of the clips, 209 are from the TV programmes, 30 from the interview recordings. Clips range from 10 – 60 secs and are captured as MPEG files, using a Broadway card for capture. The soundtrack of each clip is copied into an audio file in .WAV format.

2.2.4 Clip characteristics and feature extraction

It was assumed initially that it would be feasible to generate clips that both satisfied ecological requirements and allowed relatively straightforward feature extraction. That assumption was not borne out by experience, and compromises had to be made in a number of respects.

One of the criteria for selecting a clip was that it contained frames that were at least approximately face-on close-ups. In practice, people in emotional states tend quite regularly to behave in ways that make the requirement difficult to meet. Problems arise from actions such as moving the head abruptly, holding it in a lowered position, or bringing a hand to the face disrupt analysis of the face. These are not random problems. They are associated with emotion, and a system designed to function in realistic contexts should preferably be designed to cope with them, and ideally to make use of them. At this stage, though, they have to be handled by human intervention.

With audio data, problems arise from the presence of multiple voices. The working solution adopted in the database was to remove by hand passages where someone other than the target individual was speaking. Overlaps pose a problem related to the one mentioned in the previous paragraph. They are characteristic of emotion, but in the present state of the art can only be handled (not completely satisfactoril;y) by hand editing.

Issues like these led us to undertake a qualitative analysis of emotion-related features in the database, including those that are not immediately accessible to automatic analysis (see 6.5).

2.3 Additional databases

For preliminary work on the audio channel it has proved useful to analyse a number of smaller, more structured databases. 

2.3.1 McGilloway database

S. McGilloway worked with the QUB team on an earlier project, and allowed PHYSTA to use material that she had recorded.

Material Recordings were made by 40 readers. Each read 5 passages of about 100 words each. They were designed to evoke specified emotional states in the readers – fear, anger, happiness, sadness, and neutrality.

Validation Validation was carried out at the stage of passage selection. In the first instance, the experimenters generated a range of passages intended to evoke each of the relevant emotional states. These were then reduced to two per emotion, selecting the ones which were judged to evoke the target stae most effectively. 20 naïve subjects then read the passages and identified the emotion that they judged each one to express. The five most reliably identified passages were then used for the experiment. They were all identified correctly by all subjects. The reading exercise provided additional informal validation – some readers were unable to complete the exercise because they found the material too emotional.

Assessment The passages’ ability to evoke emotion is clear both intuitively and from the validation exercise. They have the advantage that they evoke a specific form of emotion, in contrast to verbal instructions, where anger may notoriously be hot or cold, happiness tranquil or excited, and so on. Their main drawback is that the verbal content differed from passage to passage. That is less critical than one might imagine because most of the information that distinguishes individual words is removed during feature extraction - measures are either insensitive to the spectral information that identifies words (pitch and intensity), or average it over a long enough period to remove most effects of individual words (long term average spectra). The real problem is that prosodic attributes are dictated by the writer. Some may well be genuinely relevant to the expression of emotion (i.e. equalising them would be suppressing relevant variables, not controlling irrelevant ones). However, it would be useful to have better information on the issue.

2.3.2 QUB passages

Emotive texts of the kind developed by McGilloway are an interesting intermediate between truly spontaneous emotion and neutral sentences overlaid with emotional expression. Above all, they provide an opportunity to register evidence that lies on a relatively coarse temporal scale – for instance a crescendo, or a sustained rhythmic pattern. Research based on single sentences is effectively blind to effects at that level, and we are unconvinced that emotion can really be imposed on a neutral passage of any length.

Recordings are currently being made which develop those ideas. The goal is to obtain a structured emotion database that has the potential to reveal large scale prosodic effects, but that is large and well-structured enough to support training.

Material Two types of passages are contained in this database: On the one hand, there are constructed passages as in the McGilloway database; on the other hand, transcripts of spontaneous emotional passages extracted from the main database (section 2.2) were read. The same five emotional states as in the McGilloway database were used: Fear, anger, happiness, sadness, and neutrality. For each of these states, four passages (2 constructed, 2 transcripts from the main database) were read by each speaker. At the moment, recordings have been made by 14 drama students and 15 amateur actors. More recordings are planned. People with acting experience were preferred speakers because they are more likely to produce convincing results in an acting task, as the intentional expression of emotions, than untrained speakers. The constructed passages were about 100 words long; for the spontaneous passages, lengths vary from 30 to 130 words.

Validation As in McGilloway’s database, the passages used in the recordings were selected from among a larger number of emotional passages, in order to guarantee the appropriateness of the passages for the intended emotional state. In a first step, several transcripts of spontaneously produced emotional passages, extracted from the main database, were rated by 4 experts. Ratings comprised two questions: How strongly the passage induced the intended emotional state, and how easy it would be to express that state through the voice when reading the passage. The 3 best rated spontaneous passages for each emotion, along with the corresponding McGilloway passage and two more constructed passages, were then presented in a validation test. 10 naïve subjects (5 male, 5 female) read the passages in random order. They first had to determine which emotion was expressed by the passage, possible answers being “fear”, “anger”, “happiness”, “sadness”, “neutrality”, and “none of these”. In a second step, the intended emotional state was shown, and raters were asked how strongly that state was induced in them when they read the passage. They were also asked how easy they thought it would be to read the passage in a way appropriate for the intended state. Based on the results of that test, 4 passages were selected per emotion, for use in the recordings: 2 constructed passages, one of which was the McGilloway passage for each eomtion, and 2 spontaneous passages.

Assessment 
If the analysis of the passages shows consistent prosodic differences, then it is reasonable to assume that they are genuinely associated with the relevant emotions.

2.3.3 KCL sentences
- Material Recordings of seven example sentences of  length four seconds were made of seven male speakers. The speakers were instructed to read the sentences in the emotional states neutral, happy, angry, sad, surprised, disgusted and fearful, resulting in 343 recordings. The digital recordings were converted to PCM files sampled at 16 kHz, and further processed by the Java implementation of the ASSESS system (see paragraph 3).
- Validation/Assessment The 343 sentences were used to assess the abilty of the system to distinguish emotional engagement of different speakers using various classification techniques from machine learning and neural networks (Fellenz et al., 2000). No judgement of the validity of the sentences were done, to enforce a natural testing environment.

3 Feature extraction for speech

3.1 General framework

We have developed a suite of programs designed to accept samples of speech digitised in a standard format (at present .wav) and to output summary descriptions of properties that are potentially relevant to the impression that the speech creates. It is called ASSESS.

Unlike traditional tools used for that purpose, ASSESS is capable of automatically determining higher order properties of the speech signal, like extrema (peaks and troughs), movements (rises and falls), or plateaux of pitch and intensity.

ASSESS automatically generates statistical summaries of all of its measurements that can be used for machine learning techniques as well as for manual interpretation.

The methods used are relatively robust, providing meaningful results with no manual intervention even for recordings of moderate sound quality. However, the program gives the option of obtaining visual feedback that allows the user to check how satisfactory analysis is, and to intervene manually if it is necessary. These options are important for the construction of the reference database that PHYSTA will use.

The suite incorporates several broad types of operation.

3.1.1 File preparation 

ASSESS internal  processing uses a format called .dan, and a sampling rate of 20kHz. If files are in any other format (e.g .wav), or sampled at any other rate, they need to be converted before ASSESS can analyse them.

An initial sample sometimes contains material that is not relevant to an ASSESS analysis (e.g. interjections from another speaker). It can be removed from analysis by selecting the relevant part and zeroing the signal there (so that it appears as a straight line segment on a voltage/time plot). Later stages of ASSESS recognise that kind of segment and exclude it from analysis.

3.1.2 Basic signal processing

ASSESS stage 1 takes the plot of voltage against time defined by a .dan file and outputs descriptions of three basic types – overall signal energy, signal spectrum, and vocal cord openings. Vocal cord openings are tentatively identified using an algorithm due to Howard which picks up rapid upswings in the voltage/time curve. They form the basis on which the pitch contour (F0) is estimated.

The operations used in Stage 1 are not novel – they are selected from a range of well known techniques.

3.1.3 Setting thresholds and reference constants

Stage 2 of ASSESS begins with operations described collectively as ‘validation’. They are concerned with quantities that vary with recording characteristics, and their function is to ensure that those quantities are set in a way that is appropriate to the sample.

ASSESS contains routines for making these setting automatically, but it also allows the user to check the settings that are chosen , and to change them by hand, if need be. That is facilitated by graphic displays that an observer can use to check default settings and see the effect of changes.

3.1.4 Contour construction

The core of Stage2 is the description of two contours, one representing the rise and fall of intensity and the other describing the rise and fall of pitch (or strictly speaking F0). To do that, variations on a smaller scale need to be smoothed out, and the contours need to be set on a natural scale – dB for intensity, Hz for pitch. . Figure 3.1 shows an visual output example of the pitch estimates of four overlapping regions and the corresponding spectrogram.
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Figure 3.1: Visual output of the pitch estimates of four overlapping regions (upper) and the corresponding amplitude (middle) and spectrogram (bottom) of a four second test sentence.

3.1.5 Qualitative division

The distinctive character of ASSESS rests on the fact that the speech signal is divided into significant units before quantitative descriptions are formed. The main units to be considered are as follows.

Discourse

This term is used for a protracted speech episode from which digitised samples are taken. There is no limit on the length of a discourse, and durations of an hour or more are commonplace. Since a single ASSESS sample can only last a few minutes, the user has to divide the discourse up into parts of that size.

Passage

This term is used for the speech captured in a single .dan file and processed as a unit by ASSESS. The limits are determined by the user within the length limit noted above. All the main stage2 output files include descriptions of the passage as a unit.

Tune

This term is borrowed from linguistics to describe roughly phrase-like units into which most passages naturally divide. Tunes are defined by the existence of a substantial break at either end. A break may consist of a pause (i.e. ASSESS detects normal background noise but no speech) or an edit (i.e the user has zeroed a portion during file preparation) or a combination of both. Tunes themselves tend to last for a few seconds.

The core ASSESS description, in .psg files, consists of blocks which give summary statistics first for the passage as a whole, and then for each tune in turn. The content of the summary is explained below.

Chunk

The term chunk is used to describe a unit one step down from a tune. It is defined by the fact that it contains nothing ASSESS identifies as a silence, however brief. Some tunes contain only one chunk, but most contain at least one internal silence, and therefore at least two chunks.

Fricative

The term fricative is used for a period during which energy in the upper spectrum is high relative to energy in the lower spectrum.

Silence 

The term silence is used for any period that ASSESS classifies as containing normal background noise but no speech.

Pause

The term pause is applied to a silence which forms the outer boundary of a tune. Normally that means that a pause will last at least 180ms.

Extrema (peaks and troughs)

ASSESS represents both pitch (in Hz) and intensity (in dB) as smooth contours which rise and fall continuously during speech. Extrema are points at which these contours either reach a local maximum and begin to fall (called peaks for convenience) or reach a local minimum and begin to rise (called troughs for convenience).

Movements (rises and falls)

Movements are intervals between neighbouring extrema on a contour – rises if the second extremum is higher than the first, falls if it is lower. A movement has two attributes, a duration and a magnitude. Magnitude is measured in Hertz in the case of the pitch contour, and in dB in the case of the intensity contour.

Plateaux

A plateau is the relatively level stretch of a contour (pitch or intensity) that extends on either side of an extremum. Specifically, the edge of a plateau is located at the point where the contour has travelled 1/10th of the way to the next extremum (considering change in pitch or intensity rather than time).

3.1.6 Statistical summary

The core strategy of ASSESS is to make the natural set of measurements on each type of unit that it considers and to output a statistical summary that includes most of the descriptors that one might naturally consider.

Wherever possible, ASSESS uses a standard set of summary statistics, consisting of the number of instances that make up the set of measures under consideration; the mean; the standard deviation; and selected percentile points of the distribution (0, 10, 25, 50, 75, 90, 100). Most features give rise to two summary sets, one for magnitude and one for duration. 

Innumerable special-purpose measures could be obtained from a speech signal. Generally speaking, ASSESS does not output that kind of measure (though quite a few can be derived from the basic measures that it does generate). However, there are certain kinds of information that need to be presented in  specialised formats. The main cases involve the spectrum and tune shape.

Finding compact summaries of the relevant spectral properties is a non-trivial exercise, but ASSESS incorporates several types of description that appear potentially useful. An obvious and widely used parameter is the slope of the spectrum, which is usually measured in dB per octave. ASSESS carries out a regression to find the slope (by plotting energy per 1/3 octave filter against its centre frequency). Several research teams have used an alternative approach where the information in LTA spectra is summarised in terms of a few broad bands corresponding to key regions of the spectrum. ASSESS reduces the long term spectra to four bands which reflect choices in the literature.

In addition, special spectra are found for two types of feature, fricatives and peaks in the intensity contour. The features are significant because they correspond approximately to linguistic units, fricative consonants and vowel centres. They are also used to calculate spectrum-like representations which indicate whether energy in a particular filter band is likely to be different from energy in the same filter band at another time, or from energy in a neighbouring filter band at the same time.

Various studies indicate that expressive speech is associated with relatively high order properties of tunes. The measures grouped under the heading ‘tune shape’ capture some that can be extracted automatically. These are of three main types.

· The key types of unit within each tune are described – slices, slices classed as fricative, slices classed as non-fricative, fricative bursts detected, intensity peaks detected.

· The pitch contour of each tune is fitted by a quadratic function. 

· Properties associated with the way tunes open and close are described explicitly.

3.2 Output format

ASSESS output is an attempt to compromise between two principles. The first principle is to obtain any descriptive statistic that there is a reasonable chance might be of interest, so that it is not necessary to construct additional layers of statistical calculation over and above ASSESS – not least because ad hoc routines are uncomfortably likely to contain errors. The second principle is to make it reasonably easy to home in on relevant information. The basic approach to achieving both is to separate out different types of description rather than creating a single, unmanageably large, body of data. The main files are as follows.

3.2.1 .INT files

These are binary files which store output from stage 1. They are designed to be read by stage 2.

3.2.2 .EXM files

These are tab separated text files which describe each of the basic elements extracted in stage 2,

· fricative bursts,

· extrema in the intensity contour,

· extrema in the pitch contour. 

The format means that they are easily read either by programs concerned with higher order operations (e.g. recognising emotion) or by packages like EXCEL, which allow exploratory statistics, graphical representation, etc..

3.2.3 .PSG files

These are the core output of the system. They present the summary statistics that we have identified as most often likely to be useful. They are also tab separated text, and accessible to programs or packages.

3.2.4 .OUT files

These hold relatively raw descriptions of most aspects of the passage, which lend themselves to combination if required – e.g. sums and sums of squares rather than means and standard deviations, extended frequency counts as a basis for estimating centile points etc, full spectral information. 

3.2.5 Reference files - .AMR, .CFG

These allow cognate files to be analysed with the same parameter set – so, e.g, intensities can be described on the same scale. What is meant by ‘cognate’ is that there are reasons to expect parameters used in measuring intensity, setting the pause cut-off, etc. to have the same values, as happens under closely matched recording conditions.

3.3 Java implementation

The ASSESS system was converted from the C sources supplied by QUB to the Java programming language, to allow the further development of the system on the different computing platforms used in the PHYSTA project. The PCM-encoded speech signal is read by the Graphical User Interface (GUI) of JAssess and can be displayed in the main window (Figure 3.2). To show the overall distribution of frequencies in the speech signal, the Fast Fourier Transform (FFT) of the signal can be displayed in the main window (Figure 3.3). To analyse the signal, the pitch detection and analysis routines of ASSESS can be invoked from the Edit menu, resulting in the display of the spectrogram, amplitude distribution and pitch estimates (Figure 3.1). The statistical output of the run is stored in servaral files, which can be used for classification.

[image: image2.png]
Figure 3.2: Display of the unprocessed speech signal.

[image: image3.png]
Figure 3.3: Display of the Fast Fourier Transform of the speech signal.

3.4 Summary

The development of ASSESS has been a large undertaking, integrating as it does a large number of processes, signal processing, statistical, and user interface, that are relevant to the style of speech processing that PHYSTA has emphasised. The system now represents both a front end for processes concerned with learning to recognise speech, and a tool for phonetic exploration of relevant variables, which can in turn inform automatic processing.

4 Feature extraction for faces

Previous report [2] has shown the rather poor results of classifying directly from the lowest level of subsymbolic information (i.e., the image pixel values), in particular because of sensitivity to small misalignments of the pictures and to inter-personal differences in face structure and expression. We are likely to get much better results by decomposing the problem in 2 phases, namely first extracting info of potential relevance to the conveyed emotion, then classifying the expression on the basis of this information. Even though the activation of facial muscles can affect the whole facial appearance, looking at only the main components of the face (eyebrows, eyes and mouth) is generally sufficient to guess the expression; psychological research even suggest that these components may guide our global perception of the whole face, as illustrated by the 'Thatcher' effect. Hence we choose to focus on the most expressive parts of the face: eyes, eyebrows and mouth. This should still contain enough information for categorization, and those are salient areas that can be detected automatically (however the localisation was done manually for the preliminary work exploring the classification techniques, presented in Section 7.5). Further, this limits the amount of data to be dealt with and computation time at the classification stages, by reducing the dimensionality of the data for a single picture from thousands to between 10 and 20.

Thus it is of crucial importance to have a robust method for the extraction of these components, on which the system will rely to recognise the expression. The information contained in the rest of the face could in principle be used also, but is much more difficult to extract and is very redundant with that contained in the main components. We first describe here the techniques used to extract the main face components, then how the key-points of each component are located.

4.1 Main facial components extraction

Faces are given as inputs to the program, so they have to be detected prior to the features extraction process. The program needs 4 coordinates values, namely x and y of the top left corner and x and y of the bottom right corner of the rectangle containing the face in the first frame. The 4 values are read in a .dat file. The face is then tracked from one frame to the next. The .dat file is very important for the algorithm, as it is the only way it has to know where the face actually is in the image. That is why the face detection stage has to be robust, even if the present algorithm does not need a very precise location. The most important is that the box is centered on the face, that the face stands entirely in this box, and that no other part of the body (neck in particular, or hair which is irrelevant) is inside the box.

The first step of the algorithm is to locate the eyes from the given image. In most cases, the eyes are the easiest features to detect, because eyes characteristics do not vary as much as eyebrows or mouth ones from one person to another. Moreover, the contrast between eyes and skin is usually sharp, which is not the case for eyebrows (as some people may have bright hairs) or mouth (the border between lips and skin is often not very clearly defined). For these reasons, the eyes are used as a reference in the algorithm. It is a starting point, and the eyes detection thus has to be robust, because all further processes rely on it.

4.1.1 Blobs Extraction

From the original grey-scale image, a sequence of morphological operators is applied to extract the most relevant components: The image is first taken through a vertical edge detection filter, then dilations are applied to the resulting binary image to form what we call blobs, and finally irrelevant information (i.e. blobs that cannot be part of the features we are looking for) is removed by erosion.

The original image, with face detected, is first eroded, so that only the inner part of the face (where the eyes are most likely to be located) is kept for further processes. The structural kernel is the basic 8-connectivity kernel. The erosion is repeated 2K+9 times, where K = (FaceHeight + FaceWidth) / 40. This formula simply ensures that the larger the face is, the more it is to be eroded. That is, in other words, a kind of normalisation, even if it is not very precise. But this process does not have to be very precise, it is only used for a gross pruning.

Once the face is eroded, a horizontal edge detector is applied. The filter is:

0  1  0

0  0  0

0 -1  0

Then the absolute value of the filter output is taken. This value (between 0 and MAXCO, the maximal number of colours in image, i.e. 255) represents the vertical contrast for a given pixel. The result is then thresholded, resulting in a representation of the blobs contained in a binary image (black and white).

The gradient image is then dilated and eroded in order to connect small blobs that should actually belong to the same feature. Again a 8-connectivity is employed, and these operations are repeated K/2 (Dilations) and K/4 (Erosions) times. Resulting image is then opened, to remove any potential remaining noise. Figure 4.1 shows the resulting pictures.


(a)




(b)




(c)

[image: image18.jpg][image: image19.png][image: image20.png]Figure 4.1: Original image (a) and results from preprocessing: horizontal edges detection (b) and blobs after erosion/dilatation (c).

4.1.2 Eyes localisation

The blob image is then searched for the eyes. The face is vertically split into two windows, one for the left eye, the other for the right one. This assumes that both eyes cannot be located on the same side of the face and therefore limits the amount of rotation the program can deal with. The list of blobs is then read to look for twin blobs. Two blobs are said to be twins if they are on different sides of the face and have similar areas.

At this stage we still have to choose among twin blobs which ones are the eyes. In both left and right box, each blob is given a Possibility value. This value is normalised, and the closer to 1, the more likely it is to be an eye. In both left and right section, blob with highest Possibility value is elected as eye. The most critical phase is to determine the way the Possibility is to be estimated. The blobs shape does not really provide reliable information so it is not used here. The Possibility takes into account the blobs’ size (relative to the face size) and the horizontal alignment of the twins. The importance of these two factors is weighted according to parameters defined empirically. Figure 4.2 (a) shows the detected eyes.
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Figure 4.2: Detected eyes (a) and the initialised boxes within which features are sought (b).

Now that the eyes have been successfully located, this information can be used to focus in some areas: a box is defined for each of the other features we are seeking. The boxes are positioned relative to eyes location and their size is function of the boundary distances from eyes to features over the training set of faces processed manually. Figure 4.2 (b) shows the boxes thus defined.

4.1.3 Eyebrows localisation

A vertical edge detector is applied to the eyebrows boxes. The filter is very basic: 

 1 

 0 

-1

With this filter, it is possible to detect a gradient from top to bottom (i.e. going from white to black). This will thus detect the top border of the eyebrows. The result is thresholded to keep pixels with most significant changes and remove noise. Box content is then dilated, according to the structural kernel below, so that all blobs part of the feature are connected. As eyebrows shape is mostly horizontal, it is natural to use a horizontal structural kernel for dilatations:

0 0 0

0 0 0

1 1 1

4.1.4 Nose and mouth localisation

First, a global box for both nose and mouth is examined to determine the horizontal frontier between those two features. Once frontier has been found, the box is horizontally split into two boxes (the upper for nose the other for mouth) for further specific processing.

Expected vertical nose and mouth positions are initialised at one quarter and three quarters of the box. Then, each blob inside the box, moves these expected positions towards its own position, with a strength that is linearly dependant on the distance between nose (resp. mouth) and blob position, and on the square root of the blob area. That is, the biggest blobs (most likely to be the features sought) attract most the expected feature positions. The global box is then horizontally split in two from the middle of the two expected locations.

The top box is searched for the nose position. Again, a horizontal edge detector is used, but this time we are looking for the bottom of the feature so we are interested in a specifically oriented gradient, that is going from black to white from the top to the bottom. Hence the filter used is: 

-1 -1 -1

 0  0  0

 1  1  1

The nose is obtained after a threshold operation: Pixels with a gradient greater than a certain value function of the maximum gradient within the box are added to the nose set.

We are seeking both upper and lower edges of the mouth, so an “up and down” horizontal edge detector is applied to the mouth box, followed by a threshold operation. It is then dilated and horizontally opened (since the mouth tends to have a horizontal shape). 

In Figure 4.3, panel (a) shows the nose and mouth detected, while panel (b) shows all six components detected. For each component, we have a blob covering most of its area. However, we need a quite precise description of the location and shape of each component, and Section 4.3 explains how we extract key points for each component. The next section explains how current information is used to track the face, thereby decreasing the amount of processing needed to extract the facial components from the following frames.




(a)





(b)

[image: image23.png][image: image24.png]Figure 4.3: Nose and mouth detected (a) and all 6 main features detected (b).

4.2 Tracking and refining

4.2.1 Tracking

Face tracking provides a very fast and efficient way of focusing image processing on the face, without having to use a time consuming face detection algorithm applied to the whole image.

After eyes have been detected from first frame, distances between left eye and face box edges are memorised (the red lines in Figure 4.4). For the following frames, eyes are detected inside the eyes boxes, and from the last frame eyes position, a general movement is straightforwardly computed as the difference between these two positions.

This movement actually represents the left eye movement, but as we do not allow too much rotation and scaling, this can be interpreted as a general head movement.

According to this movement, the facebox is translated, so that it is always focused on the head. It is assumed that the movement between two frames is not too large, so that the eyes always fit inside the eyes boxes, even before translation of the box. As long as the head movement between two successive frames is not too important (i.e., both eyes still stand inside their respective boxes), this technique provides reliable results.

[image: image25.png][image: image26.png]
Figure 4.4: Face tracking between first frame (a) and next frame (b). Red lines show distances between face borders and left eye centre.

Eyebrows, nose and mouth boxes are also translated according to the movement computed from the eyes, before features are extracted from the new frame. Like face tracking, features tracking makes the program faster as we know where the features are supposed to be, and we do not need search the whole set of pixels contained in the face. In summary, for all frames but the first one of a sequence, all the processing involved is the feature-specific searches within their resized boxes.

4.2.2 Refining

These specific searches for the main features use many parameters (e.g., thresholds, structural kernels, etc…) that can be adjusted for improved accuracy over the following frames. The fine-tuning of these parameters requires a feed-back on the quality of the ouput previously generated. To this end, the algorithm assigns marks (scores) to each of the main features in order to evaluate the correctness of their detection. The marks mostly rely on the computed symmetry of the detected features.

Symmetry

A symmetry mark is given to each feature, except to the eyes which are used as a reference for the symmetry investigation. To compute  the degrees of symmetry, the algorithm uses 6 distances, 2 horizontal and 4 vertical (see Figure 4.5).

The 4 j values analyse the vertical alignment of the four kinds of features: Eyebrows centre, eyes centre, nose and mouth should be located on the same straight line (also symmetry axis of the face). As we assume the head is not rotated, this implies the axis should be vertical, and all features should have the same horizontal position.

j1 compares nose vs mouth horizontal positions. 

j2 nose vs eyes positions.

j3 eyebrows vs eyes positions.

j4 mouth vs eyes positions.

i1 ensures vertical distances between eyes and eyebrows are the same for both pairs (left and right).

i2 checks if the distance between nose and mouth is the same as distance between nose and eyes. This is to be sure nose is not too close to one of the other features.

These values are then normalised and subtracted to 1, so that a perfect output corresponds to 1, and the worst to 0. From these values, features marks are calculated as:

EyebrowsMark = j3 * i1

NoseMark = j2 * i2

MouthMark = j4 * j1

[image: image27.png]Obviously, if the eyes are not detected at all, most marks cannot be computed, and are thus set to 0.

Figure 4.5: The distances used to evaluate the outputs.

Eyebrows evaluation

Other values can be indicative of the success of the eyebrows detection, using the size information.

Eyebrow areas are compared to eye areas; the ratio of areas is computed and should be close to 1.

During the eyebrows detection process, the number and the size of the extracted blobs within the eyebrows boxes is recorded to give the algorithm good information about the threshold and structural kernel suitability (see next section).

The two most common problems in eyebrows detection are that blobs do not cover the entire eyebrows (horizontally too small) and that they are not centered. Generally, eyebrows are supposed to be well detected if their centre is near the eyes centre, and if they width is around twice the eyes width, so the following value gives a good complementary accuracy estimation:

Eyebrow.Mark = (1 - 4* |Eyebrow.j - Eye.j|) + Eyebrow.width / (2 * Eye.width)

Parameters adjustment

The validity of the marks computed is under investigation. Although output quality marks are very useful to know if the output is good or not, it does not provide enough information for refining. Indeed, if a feature mark is weak, this just means the feature has probably not been accurately detected, but it does not provide any further information. If, for example, eyes, nose and mouth are not on the same axis, there is no way to know which one of the feature is wrong, or even if there is only one or more misdetected features. However, the output mark can be used as a confidence information. If the algorithm is quite confident about the quality of a feature detection, then it can focus on it. On the contrary, if the mark is weak, the algorithm will zoom out and look around if the feature is not somewhere else.

This rule is applied as feature boxes are scaled according to the output mark. If it is high, the box's size is reduced (but care is taken that the feature still fit within the box), else the box is enlarged.

Feature areas are compared to eyes areas, and face dimensions, to adjust thresholds values. If a feature is too small, then the threshold is decreased. On the other hand, if it is too large, the threshold is increased.

Finally, blobs quantity and size are also used for refining. If many small blobs have been detected, that means that the structural kernel used in the dilations is not large enough. If only a few blobs are detected, that may mean that the threshold is too high.

From the number and the size of the detected blobs, the algorithm can thus adjust the thresholds and dilations structural kernels: Dilation is increased when the number of blobs is too big AND the eyebrow area is smaller than the eye area.

Outcome quality estimation can be further used by the emotion detection process. It could indeed give more or less importance to a given feature according to the marks at the classification stage.

4.3 Feature points localisation

A previous report came to the conclusion that the static approach (using a single frame) is limited and that a dynamic approach that takes into consideration several frames is needed. It is important for the generality of our system to be compatible with the standards defined for video sequences, so the framework outlined in [1] is adopted. It defines sets of parameters that allow a precise description and animation of human bodies and faces for the MPEG-4 standard. Over 50 feature facial points (Facial Definition Parameters or FDPs) are used to define a given face, and as many basic actions (Facial Action Parameters or FAPs) that a face can perform are used to describe its movements and lead to the rendering of any expression. The FAPs express changes over time of relationships between FDPs, for instance of the distance between two feature points. They are normalized according to some distances independent of the expression, in order to achieve scale invariance (to get consistent values regardless of the scale of the picture, distance from the camera, etc...) Specifically, those units are the distance between the eyes (ESo) for horizontal distances and the distance from the middle of the eyes to the tip of the nose (ENSo) for vertical distances. Each distance forming the basis of a FAP is divided by Eso or ENSo depending on whether it is a horizontal or vertical distance.

[image: image28.png]
Figure 4.6: The 19 feature points defining the 6 main facial components.

After the high-level features localisation, the algorithm knows some information about the features, in particular their spatial position. The next step before the FAPs can be computed is to localise the feature points inside these components. Figure 4.6 shows the 19 points needed to define the location and approximate shape of the facial components. Many possibilities are available for shape approximation from the blobs positions. A basic colour-based contour retrieval algorithm was implemented but did not give suitable results (it is sometimes very difficult to follow the eyebrows border using only colour information, as contrast is usually very poor in the extreme regions of the eyebrows). Hough transform could provide a solution for shape finding. Indeed eyes and mouth have elliptic shapes. However, ellipses retrieval with Hough transform is very time-consuming and complicated, so that alternative was not implemented. Snakes or Kohonen's maps could be used to solve the problem, but, as they are based on an iterative process, their complexity is large. Lastly, a gradient-based procedure was implemented to find features borders from blobs. But many problems appeared, in particular for the eyes and the mouth, as they can have very different configurations whether they are opened or closed.

As the features location gives quite good approximation of the features shapes, a basic process applied to extracted blobs can give good approximation of feature points spatial location, like taking coordinates at the extremity or in the middle of the blobs as detailed below.

Eyebrows

Feature points number 2 and 5 are eyebrows top position. 1 and 6 are leftmost eyebrows pixels, and 3 and 4 are rightmost.

Eyes

Only the darkest pixels are kept in order to remove skin pixels, which are brighter than eyes. This threshold operation may remove some white pixels, but the frontier between skin and eyes is always kept because it is dark. Then, feature points are mapped to eyes edges.

Nose

Horizontal position is the middle of the detected nose. This may bring inaccurate horizontal result, because only one nostril could be detected, in case of unequal lighting conditions. However the horizontal position of the nose is not relevant for the further steps (emotion recognition) because it is supposed to be constant over all the frames, and only the vertical position of the nose is used, for distance normalisation. Vertically, we choose the bottom pixel.

Mouth

Mouth corners (top, down, left and right) represent the four mouth feature points (16, 17, 18, 19). This usually works quite well, as the vertical contrast between skin and mouth is often clear. There can be some misdetection when lips show light reflections.

Table 4.1 summarizes how the coordinates of each feature point are chosen from the blobs, and result is displayed in Figure 4.7.

Table 4.1: Method used to choose the feature points coordinates from the feature blobs.[image: image29.png]
[image: image30.png]
Figure 4.7: The 19 feature points extracted from the 6 main facial components.

5. Expressing emotional meaning

Emotion understanding, as outlined in the introduction, relies upon the development of appropriate representations capturing at least some of the structure inherent in emotionality as understood by humans. Exploring this underlying structure provides information about the properties of an emotion that are usually summed up in an emotion label. This, in turn, allows the description of the degree of similarity between emotion labels or the prediction of action tendencies that are typical for certain types of emotion. Also, continuous descriptions are essential when gradual emotional states are to be described rather than fullblown emotions.

5.1 FEELTRACE

A program called Feeltrace was developed at QUB to allow the measurement of emotional tone through  listener judgements. This type of measurement is typical for recordings of naturally occurring expressions of emotion when speakers’ self-report is not available. Unlike classical word-list approaches, the design of Feeltrace is particularly adapted to the description of emotional states as opposed to fullblown emotions, in that it allows the continuous description of both emotion intensity and change of emotional tone in time.

The principle has been described in earlier reports. It has now been translated into a system that is robust and has been validated.

5.1.1 Design

Feeltrace uses a simple but tractable representation of emotional tone based on psychological research. In the literature, many authors agree that emotions can be organised roughly into a two-dimensional space whose axes are evaluation (i.e. how positive or negative the emotion is) and activation (i.e. the level of energy that a person experiencing the emotion is likely to display). Feeltrace provides users with an accessible way of assigning co-ordinates in evaluation-activation space to continuous expressions of emotion (conveyed through the face and/or the voice in a recorded passage displayed on the computer screen).

The program presents users with a particular representation of this two-dimensional space on a computer screen. The form it takes is associated with Plutchik and many others. Possible emotions are arranged in a circle. Strong emotions lie at the periphery; the centre represents an emotion-free state of alert neutrality. The vertical axis of the circle represents activation level, the horizontal axis evaluation - positive emotions are on the right, negative on the left. Users are asked to specify the emotional tenor of what they are listening to by moving a pointer on a computer screen (using a mouse) so that it shows where on those two dimensions the emotions they are perceiving fall at any given instant.

The Feeltrace display is designed to convey the basic idea of emotion as a point in a 2-D space. It incorporates several features which are meant to ensure that subjects understand what a pointer position means. The main axes are marked and described, one (activation) running from very active to very passive; the other (evaluation) running from very positive to very negative. Basic emotion words are positioned in the circle at co-ordinates empirically determined in the BEEVer experiment reported below (section  5.2). In addition to these words describing moderately intense emotional states, selected words representing extreme, fullblown emotions are positioned around the circle at positions consistent with the BEEVer results. The colour of the pointer is keyed to its position using a colour coding introduced by Plutchik, which subjects find reasonably intuitive: The cursor is green in positions corresponding to highly positive emotional states, and red in positions corresponding to highly negative emotional states; yellow in positions corresponding to highly active emotional states, and blue in positions corresponding to very inactive emotional states. The dimension of time is represented indirectly, by keeping the circles associated with recent mouse positions on screen, but having them shrink gradually (as if the pointer left a trail of diminishing circles behind it). Figure 5.1 shows an example of the display that a subject using Feeltrace sees at a particular instant. The subject’s rating of the episode that he or she is observing has moved from being active/negative to passive/positive. (Colours are not indicated).
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Figure 5.1: Example of a Feeltrace display.

5.1.2 Measurement reliability

The reliability and precision of Feeltrace measures were tested in a recent study.

The instructions given to the subjects showed to be crucial for the use of Feeltrace. In order to assure that all subjects understand the system, a stepwise procedure for the instruction of new subjects was developed and is summarised hereafter.

First, the organisation of the circle according to the two dimensions is explained to subjects, with the neutral point in the middle and intense emotions at the periphery. Then, their attention is drawn to the colour coding of the mouse pointer, and the principle of recording through mouse clicks is explained. Now, subjects are asked to position a few emotion words in the circle to makes sure they understand the dimensions. After that, the emotion words mentioned above (5.1.1) are added to the display and described as landmarks subjects can use for their orientation in the 2-dimensional space. As a next step, static emotional faces are to be rated, which approaches the task required from the subject, but leaves out the complexity of change over time. This aspect is introduced by the presentation of music whose emotional content is to be tracked over time by the subjects. Then finally, audiovisual trial clips of the same kind as used during the experiment are presented, and must be tracked on the Feeltrace display. This involves alternation of recording phases when the person to be rated speaks in the video and non-recording phases when another person speaks. At each stage, the experimenter observes the subjects’ behaviour, and they can ask questions in order to clarify specific aspects of the task.

In order to assess the reliability and inter-rater consistency that could be reached given the above instruction procedure, a small study was conducted. Eight audiovisual emotional passages, each from a different speaker, were selected from the main database (section 2.2). Passages were selected in such a way that two passages  were intuitively associated to each of the four Feeltrace quadrants. Furthermore, for each of the eight emotional passages, a relatively neutral passage produced by the same speaker was selected. 24 subjects rated the 16 audiovisual passages with the Feeltrace program after receiving instructions according to the standard procedure.

The statistical analyses of the results show that Feeltrace is a reliable tool of measurement and give indications of its precision. First, the difference in intensity (distance from the centre of the circle) between emotional and neutral passages was highly significant (repeated measures ANOVA, within subjects, F(23,1) = 453, p < .001). High levels of significance were also found when differences along the two dimensions activation (F(23,1) = 239, p < .001) and evaluation (F(23,1) = 847, p < .001) were examined separately. This indicates that neutrality (the centre of the circle) and each of the four quadrants can be distinguished very reliably. In addition, paired t-tests showed significant differences between the two emotional passages in a quadrant for three out of four quadrants (see also figure 5.2). This indicates a more fine-grained resolution of Feeltrace measures.
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Figure 5.2: Means and standard deviations of Feeltrace ratings for the eight emotional passages.
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Figure 5.3: Means and standard deviations of Feeltrace ratings for the eight neutral passages.

The standard deviations of Feeltrace ratings (figures 5.2, 5.3) give an indication of the resolution that can be reached with this tool. Standard deviations are typically about 1/5 of the circle’s diameter. Thus, Feeltrace should be able to segregate up to 25 reasonably distinct regions in the two-dimensional space.

Statistical analysis showed that standard deviations hardly change when the number of participants is reduced to six, thus indicating that six seems to be the number of participants necessary in order to obtain reliable results.

5.2 BEEVer

One of the challenges facing the project is to identify the kind of knowledge about emotion that is relevant, and appropriate techniques for expressing it. The obvious approach is to select a few well-known emotion terms and to construct classification systems which try to assign these terms correctly to records of human performance. However, that is unsatisfactory for a multitude of reasons.

1. The selection of terms defines the problem to be solved, and that is not something that should be left to the experimenter's casual intuitions.

2. The selection criteria should take account of the states that the system is likely to enounter - not just of examples which are salient, and perhaps theoretically interesting, but rare.

3. Emotion terms are discrete, but emotional states form a continuum. Discrete terms need to be embedded in continuous representations that at least permit interpolation, and that ideally allow for the kind of shaded judgement that people can achieve (e.g. by qualifying emotion terms).

4. Real inputs often give partial information about an emotion - e.g. showing arousal without making it clear whether the person is happy or angry. An effective system should be able to use that kind of information rather than being forced to make a classification that goes far beyond the evidence.

5. Classifying emotion states is of no use in and of itself. Use depends on associating the terms with a semantics which indicates what the user is likely to do, and what interventions might be appropriate.
6. Intuitively it seems quite likely that these issues are linked - e.g. dealing with either incomplete information, or intermediate / compound states, involves assessing the underlying dimensions of a person's state directly rather than via the categories for which there are convenient emotion terms.

Last but not least, simple classification is not particularly interesting intellectually. Using a practical IT problem to develop deeper ideas about emotion, and emotion words, is.

Considerations like these led us to develop techniques for eliciting from human beings the kind of knowledge that neural net and hybrid systems need if they are to detect and respond to human emotions in a way that is intellectually satifying and practically useful. The core aims are first to provide a rationale for selecting the emotion-related terms that the system should be able to use, and second to define the kind of representation that we want the system to produce in response either to an emotion-related word, or to a sample of emotionally coloured behavior.

The ideas that we have used are rooted in the psychological and biological literature on emotion. Our contribution has been to translate these ideas into a form that lends itself to IT applications, and particularly to training systems with a neural net component. The result has three main elements.

5.2.1 Identifying a Basic English Emotion Vocabulary (BEEV)

Research on emotion is dogged by ad hoc selections of emotions to work with. There is no agreed benchmark, in the form of a range of emotion terms that a competent system should be able to apply. Without that, it is impossible to assess the performance of emotion detection systems in a meaningful way. Investigators describe innumerable tests or variables that are claimed to be relevant to various specific distinctions with no reference to the importance of the distinction, or the way the test would function when other possibilities had to be considered.

One approach to this problem has been explored by theorists in biology and psychology since Descartes - attempting to identify a set of 'primary' emotions, the pure elements underlying the various compounds that tend to occur in everyday life. Despite several centuries of predominance, that approach has not produced an agreed set of primaries.

We have developed a second approach, which complements the traditional one and is more immediately relevant to the IT issue. It involves trying to identify the main compounds (if such they are) that actually occur in everyday life. We have done that by trying to identify a relatively small vocabulary of words that people regard as sufficient to describe most emotional states and events that are likely to occur in everyday life. We call it a Basic English Emotion Vocabulary - BEEV for short.

As regards theory, our approach offers a way of defining the everyday 'compounds' (if that is what they are) that should be deriveable from a proposed set of elements - and without that, it is difficult to see how variants of the traditional approach can be evaluated. As regards practice, the natural goal for IT is to develop a system that can use what humans agree is a basic emotion vocabulary.

5.2.2 A 2-D emotion space

Many authors agree that emotions can be organised roughly into a two-dimensional space whose axes are evaluation (i.e. how positive or negative the emotion is) and activation (i.e. the level of energy a person experiencing the emotion is likely to display). That provides a useful basic continuum in which to embed emotion words. We have developed techniques that allow informants to assign co-ordinates in evaluation-activation space to both words and expressions of emotion (through the face, voice, or music). 

These techniques serve several functions. They define a non-categorical targets that networks can naturally be trained to emulate. They also provide a very basic kind of semantics for emotion words - a machine that could reliably assess activation and evaluation levels from audio-visual images would have at least some basis for making appropriate responses. The techniques also allow people to record aspects of their response to emotion-related displays that are difficult to capture in categorical terms. In particular, the 2-D space can be used to record how emotion-related judgements change continuously over time - capturing an aspect of human judgement that it would certainly be useful for a machine to emulate, but that is difficult to record satisfactorily using categorical descriptions.

5.2.3 An emotion schema

Evaluation-activation space captures a good proportion of distinctions between emotion-related terms, but there are many that it fails to capture. For example, fear and anger tend to be placed nearby in the space. The important difference between them involves a different kind of dimension altogether. Higher order spaces are required to capture that kind of distinction. They reflect the fact that, as many authors have pointed out, emotion is closely linked to the way the organism is disposed to act (e.g. fear involves a disposition to flee, whereas in anger the disposition is to attack), and also to the way the organism appraises the situation.

Drawing on a range of psychological theories, we have constructed a set of questions designed to capture a wider range of distinctions in a systematic way. These express a simple but reasonably powerful semantics for emotion terms, in a quantitative format that lends itself to implementation in neural nets. The dimensions divide into three blocks. 

Questions in the first block deal with the broad kind of action that someone in a given emotion-related state would be likely to take - engage, withdraw, seek information. Questions in the second ask whether the emotion has an object - i.e. whether saying that an individual is in a given emotion-related state implies that they are reacting to or thinking about a particular person or situation; and if so, whether the relevant person or situation is present at the time, or located in the past, or the future, or in the individual's mind. Questions in the third block ask about the broad characteristics of any situation - present, past, future, or mental - that is directly relevant to the emotion. They deal first with the individual's own perceived standing in the situation - powerful or powerless, well-informed or lacking information, morally sound or not - and with relevant characteristics of the situation or person - human or not, poweful or powerless, appealing or not.

An important feature of the system is that it does not require a rating on every dimension. It is always allows a question to be answered by saying that the word being considered does not provide information about that issue. The intended effect is to identify for each word a relatively compact range of features on which it does carry information, and at the same time to acknowledge that other features, which are important for other emotion words, are not particularly relevant.

The structure that we have outlined defines a form in which a partial but useable understanding of emotions can be couched. The content has been derived in the traditional psychological way, by experiment. Subjects have been asked to give their ratings on the various dimensions. That approach ensures that the information we provide is not simply an expression of our own personal theories on the subject. It also ensures that a net which is trained uing our data will use emotion terms in a way that is broadly consistent with people who are hopefully a reasonably representative sample of potential users. The possibility is clearly open to use the same elicitation techniques with other groups or in other languages if so that the system can be adapted for different users.

5.2.4 Method

We have developed a program called BEEVer which asks subjects to carry out the various ratings associated with the scheme outlined above. The study has been carried out in two phases. Phase 1 dealt with only the first two elements, identifying a Basic English Emotion Vocabulary (BEEV) and providing ratings in the evaluation-activation space. It provided a basis for refining both those elements and the choice of words from which the BEEV was to be selected. Phase 2 presented modified versions of those elements and the emotion schema.

BEEVer uses an initial vocabulary of emotion-related words from which subjects select 16 that they regard as consituting an acceptable basic emotion vocabulary. For Phase 1, the initial vocabulary consisted of words that feature in published lists that are meant to summarise the main types of emotion, plus additional terms needed to describe emotions that occur regularly in material that we have recorded for use as a database in the PHYSTA project. That produced an initial vocabulary of 45 terms. The initial vocabulary was revised for phase 2 by excluding terms that at most one phase 1 subject included in his or her selection of 16, and adding terms that subjects suggested should have been present. That produced an initial vocabulary of 40 terms in stage 2.

For the sake of readability, specific descriptions of the tasks are presented along with the results they produced.

This kind of exercise depends on ensuring that subjects understand what they are being asked to do. Much of the effort in phase 1, and smaller pilot studies for the schema, was devoted to that issue. The resulting procedure in phase 2 incorporated oral instructions, particularly on the use of evaluation-activation space; a preliminary program using four practice terms and incorporating written instructions on the use of the schema; and a proviso that subjects would be dropped if the experimenter was not satisfied that they had understood the task.

Eighteen subjects took part in each phase. Two phase 2 subjects were dropped because it was not certain that they had understood the task.

5.2.5 Results
A Basic English Emotion Vocabulary

The elicitation of the basic vocabulary had two stages. The first two questions about each word asked subjects to rate how common or rare the state was, and how psychologically simple or complex. Those ratings were used to create a preliminary division into a set of 16 candidates for a basic vocabulary and a residue of less basic words. Candidates were entered on the basis of the lower of the two ratings, i.e. they were likely to be included if they were either common or psychologically simple.

The second stage occurred at the end of the whole exercise. At that stage, after subjects had rated all the words in the initial vocabulary, they were presented with a screen showing the 16 current candidates for a basic vocabulary on the left, and the residue on the right. They were then allowed to switch words from one side to the other until the words on the left formed the best basic emotion vocabulary that they could construct.

Figure 5.4 summarises the results. The words on the left hand axis are the initial vocabulary used in phase 2. Their order is determined by the frequency with which they were chosen as basic emotion terms in phase 1. That arrangement shows that there is a good deal of stability in the outcome despite quite large procedural differences between the two phases. The most frequently selected words in phase 1, from 'disappointed' downwards, are also the 16 most frequently selected in the whole data set - with the exception of 'satisfied', which clearly ought to be incorporated into a balanced vocabulary. 

It is not the aim of this paper to set out a definitive Basic English Emotion Vocabulary - not least because the data do not show a sharp cut-off. However, the results provide an empirical basis for assessing how defensible alternative lists are. Many lists in the literature, based on a priori judgements, quite clearly fare poorly by empirical criteria: they omit terms that empirically appear important, and include others that very few subjects regard as particularly useful. From an IT point of view, that is a non-trivial point. If research allows itself to be guided by that kind of list, and the intuitions underlying it, then it risks producing systems that are expert in emotion judgements that are almost never needed, and incapable of judgements that are.

For practical purposes, it is useful to identify definite groups. It is worth distinguishing two - an inner group of seven terms, chosen by a clear majority of subjects, consisting of happy, angry, sad, interested, pleased, relaxed, and worried; and an outer group of ten, chosen by half of the subjects or slightly more, consisting of affectionate, afraid, content, excited, bored, confident, amused, loving, disappointed, and satisfied. Using the words in the inner group in particular is a reasonable target for IT.
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Figure 5.4: Probability that each of 40 words will be included in a basic emotion vaocabulary chosen by subjects (based on a sample of 36 people).

Evaluation-activation space
Activation-emotion ratings were made using a representation associated with Plutchik, Russell and many others, in which possible emotions are arranged in a circle. Strong emotions lie at the periphery: the centre represents an emotion-free state of alert neutrality. The vertical axis of the circle represents activation level, the horizontal axis evaluation - positive emotions are on the right, negative on the left. Key emotion are arranged round the periphery to provide landmarks and help subjects to orient themselves within the space. Subjects rated a word by clicking with a mouse at an appropriate point in the circle. They were allowed to revise their initial choice if they wanted to.

Phase 1 data suggested that subjects had not understood the significance of distance from the centre, and had chosen relatively peripheral points irrespective of emotion strength. Hence for phase 2, adjustments were made to the landmarks round the periphery (ensuring that they all referred to extreme emotions, in line with their distance from the centre) and to the instructions (making explicit the meaning of distance from the centre). The resulting axes and landmarks are shown in Figure 5.5.
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Figure 5.5: Axes and landmark items of evaluation / activation space as presented to subjects
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Figure 5.6: mean ratings in evaluation / activation space. The horizontal axis is evaluation, the vertical axis activation. 

Figure 5.6 shows mean positions for the frequently selected items. Panel 3(a) shows ratings for the inner group of seven, and panel 3(b) for the outer group of ten. The plots illustrate both the strength and the weakness of the evaluation-activation system.

The strength of the representation is that it captures a good deal of the information contained in basic emotion terms by way of a medium that is simple, meaningful, and convenient for both training and response. Correspondingly, training an artificial system to locate a user's current state in this kind of space seems a manageable goal, and it would provide a level of discrimination roughly comparable to a very basic emotion vocabulary. Less obviously, people find it easy to place samples of emotional behaviour in this framework, which makes it convenient for generating training samples.

The weakness is that some discriminations that matter are not well drawn in this space. One example has already been given - fear and anger more or less coincide in this space. Another is apparent on the positive side of the graph - happy, pleased, confident, amused, and affectionate are all essentially together. If they are to be discriminated, additional dimensions are needed. It is, of course, useful to have a this kind of indication that different kinds of discrimination may be needed to manage anything beyond a minimal emotion vocabulary.

In sum, ratings of this kind define a limited but useful target for artificial emotion recognition systems, and also help to mark where more sophistication is called for.

Schema representations

The schema element is the medium that we have used to provide more sophisticated discrimination. Figure 5.7 illustrates the kind of information that it provides, taking as an illustration two clusters of items that are not effectively separable in evaluation/activation space.
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Figure 5.7: samples of profiles obtained from the schema element of BEEVer

The left hand panel of the figure deals with terms that lie relatively close together in the upper left hand quadrant of evaluation-activation space. The right hand panel deals with terms that lie in the upper right hand quadrant of evaluation-activation space, and towards the upper end of it. There are gross differences between the profiles which reflect that broad contrast, as one might expect. The top panel shows that likely actions are biased towards withdrawal in the first group, and engagement in the second. The lower panels, describing relevant situations, show predominantly negative appraisals in the first group, and predominantly positive appraisals in the second. More interesting, though, are the differences within the two clusters that evaluation-activation space is not well suited to capture.

Anger can be considered as the simplest of the terms on the left. It does not indicate any particular course of action very strongly. It suggests reaction to a situation which is present, and whose main feature is that it contains something that is definitely not appealing. Fear is more distinctive. It is associated with a strong disinclination to engage, and an almost equally strong inclination to withdraw. It also carries a distinctive appraisal of the present situation - there is a powerful other involved. Worry carries an inclination to seek information, and an orientation towards future events rather than current ones.

Of the terms on the right, excited and interested both appear relatively simple. The only distinctive feature of excitement is an orientation towards a future situation, which has some - uspecified - appealing characteristic. Interest implies a disposition to seek information. Loving, in contrast, implies an object, present or in the mind, which is human and appealing.

The point of these summaries is not that they are in any way surprising. It is simply that the schema appears to capture the obvious implications of the terms in a format that is straightforward, intuitive, and empirical. A system which registered implications like these could reasonably be said to have a rough grasp of what the terms meant. That is why the schema provides a useful kind of input to a system that is meant to learn how emotion terms should be assigned, and what it means to say that person is in a particular emotional state.

5.2.6 Summary
We have described an empirical approach to identifying the kind of task that an emotion recognition system could usefully address. The results confirm that an approach of this kind is feasible. The approach lends itself to a particular style of implementation. It suggests that the domain of emotion understanding can be represented as a network involving nodes of many kinds. Emotion terms are one kind of node, but only one. Also involved are highly compressed representations of situations, built round evaluations of the main agents and forces; and of the actions that these situations are likely to evoke. Various kinds of evidence may be relevant to activating the nodes in the network, and activation in various combinations of nodes may serve to activate high order representations, such as the nodes associated with emotion terms.

It would be convenient if human understandings of emotion were simpler. In fact, they are quite clearly more complex than the scheme that we describe is capable of capturing. However, this seems to be a reasonable first approximation, which allows computational development to be guided by simplified summaries of human understanding, rather than leaving it to choose between the ostrich strategy of pretending there is nothing much to deal with, and the lemming strategy of rushing off the cliff edge in despair.

6. Second level databases

Section 2 described the recordings (audio and audio-visual) that the project has assembled. This section describes the information that either has been attached to them or is being attached in order to allow training and testing to occur.

6.1 Ratings of emotional content in the main database

The database incorporates two levels of description for the emotional content of each clip – dimensional and categorical. Both types of representation have uses in particular contexts. Between them they provide a reasonable base of information about the perceived emotional content of each clip.

Dimensional The dimensional level is uses activation-evaluation space, a representation derived from psychology. Activation and evaluation are two dimensions central to the description of emotional states. Activation measures how dynamic the emotional state is – e.g. it is high in excitement, low in boredom. Evaluation is a global measure of the positive or negative feeling associated with the emotional state – e.g. it is positive in happiness, negative in despair. It is well established that to a first approximation, emotion terms correspond to points in a space defined by those two axes.

We have written a computer program called Feeltrace based on this representation which allows users to generate time-varying descriptions of emotional content as they perceive it. Activation-evaluation space is defined by axes on a computer screen, and observers describe perceived emotional state by moving a pointer to the appropriate point in the circle using a mouse. The output is numerical and records the position of the pointer on the two axes at intervals of a few milliseconds. We have developed refinements that ensure outputs are consistent and their meaning is reasonably clear. 

Categorical Immediately after Feeltracing a clip, raters also provide categorical labels for main emotional state that it portrays. (e.g. sad, angry, happy etc). The approach tries to establish a balance between coarse and fine resolution. Raters are provided with two lists of emotion words. The first list contains 16 words that the BEEVer study suggests constitute a minimal vocabulary for describing commonplace emotional states. The second list contains 24 additional words that the BEEVer study suggests are less essential.

Raters first choose the term from the first list that best describes the dominant emotion in the clip. They are then allowed to choose up to two more labels from the whole list. Order of choice is noted. For each label that they choose they also give an indication of the intensity of the emotion on a scale from 1-3. This approach means that raters work from coarse to fine resolution in a controlled way.

To date three observers have rated the emotional content of all 239 clips in the database. They received the material in audiovisual mode. All three received extended training in the use of Feeltrace and carried out a pilot test designed to exclude observers who were outside limits established in earlier studies. 

[image: image31.png][image: image32.png]Figure 6.1 summarises the results from the first two raters. In panels (a) and (b), each point represents a subject’s mean score on the two axes (evaluation and activation) for a single clip. It shows ratings for the clips selected as emotional (the others cluster around the origin). Panels (c) and (d) indicate the level of consistency between the subjects with respect to evaluation (panel (c)) and activation (panel (d)). The finding of greater consistency with respect to evaluation than to activation mirrors other studies.
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Figure 6.1: Mean ratings of clips for 2 subjects in the activation/evaluation space ( (a) and (b) ), and between-subject consistency for evaluation (c) and activation (d), one subject being affected to one axis.

6.2 The McGilloway passage database

Speech from the McGilloway database was analysed using an earlier version of the ASSESS system described in section 3. It will be called ASSESS1. It differed from the version described there in two main respects. First, it generated a larger number of variables. Second, there was an error in its procedures for recovering spectral information (associated with variable typing). It introduced noise rather than systematic bias, but with one exception, the spectrum-related variables were judged insufficiently reliable to be used in analysis. The problem has been corrected in the current version.

Applying ASSESS1 to a passage generated a file containing 395 measures. The large number reflects the fact that in the present state of knowledge, there is a large number of variables that could in principle be relevant to classifying emotion. Converging on a smaller set is one of the keys to using ASSESS-type systems for recognition. 

Measures that were obviously content-related (e.g. related to passage length) were excluded at the outset, leaving 375 ASSESS measures to be considered. Following that, one-way analysis of variance (ANOVA) followed by post-hoc comparisons of means (using Duncan’s range test) was used to identify differences between each of the four passages and the neutral baseline. Measures were considered distinctive only if the overall ANOVA was significant at the p<0.05 level and the emotional passage contrasted with neutral passage with p<0.05. More than a third of the ASSESS measures (n=136) produced differences between passages which were statistically significant. Sixty were spectral measures and, for the reasons stated earlier, all but one were excluded from the analysis. 

To reduce the remaining 75 measures, variables were selected as markers of emotion when: (a) they usually occurred on more than one passage (a measure occurring in only one passage is more likely to have occurred by chance alone); and (b) they were generally among the simplest measures shown (i.e. simple quantities such as overall level were preferred to more complex ones such as change in level, and simple measures of those dimensions, such as means and medians, were prefered to higher order measures, such as standard deviations and inter-quartile ranges).

32  variables in all were selected as robust markers of emotion using the procedures described above. Table 6.1 gives brief descriptions of them.

Measures relating to tunes

1
tune duration

2
fit of tune to a quadratic function

3
no of inflections in F0 contour per tune

Spectral

4
Energy below 250 Hz

Intensity contour (excluding pauses)

5
Mean intensity

6
Median intensity

7
Inter-quartile range of intensity distribution

Intensity at local extrema in the intensity contour

8
Mean at maxima 

9
Inter-quartile range for intensities at maxima

10
Mean at minima 

11
Inter-quartile range for intensities at minima

Magnitude of rises or falls in the intensity contour

12
Inter-quartile range for magnitudes of rises

13
Inter-quartile range for magnitudes of falls

Pitch of points in the F0 contour

14
Number of contributing observations

15
Mean 

16
Inter-quartile range

Pitch at local extrema in the F0 contour 

17
Inter-quartile range for pitch at maxima

18
Inter-quartile range for pitch at minima

19
Inter-quartile range for pitch at all local extrema

Magnitude of rises in the F0 contour

20
Median

21
Inter-quartile range

Durations of rises and falls in the intensity contour

22
Median duration for rises

23
Median duration for falls

Durations of level sections in the intensity contour (‘plateaux’)

24
Inter-quartile range for plateaux at intensity peaks

25
Upper limit (90%) of range for plateaux at intensity peaks

26
Median for plateaux at intensity minima

27
Inter-quartile range for plateaux at intensity minima

Durations of features in the F0 contour

28
Median of silence durations 

29
Inter-quartile range for durations of silences

30
Median duration of falls

31
Median duration of plateaux at F0 maxima

32
Inter-quartile range for duration of plateaux at F0 maxima

Table 6.1: ASSESS features used for classification

These procedures gave a processed database containing 32 features for each of 197 passages (5 from each of 40 subjects, with three missing cells). That database provided the raw material for the classification experiments described in section 7.1.

6.3 Speech features from main databases

The ASSESS system has been updated in the light of the McGilloway study. Section 3 describes the system as it currently stands. The most global changes involve reducing the number of measures, and providing summary statistics for each of the individual tunes in a sample rather than concentrating description on the passage as a whole.

A number of minor modifications are in hand following pilot work with the main database and the emotive text database described in section 2.3.2. In particular, adjustments are needed to cope with material where recording levels are adjusted between passages because they involve very different intensity ranges, and tune boundaries are being output in a format that allows FEELTRACE ratings (see section 6.1) to be associated with individual tunes.

Once those modifications are in place, feature extraction will be carried out for the main and emotive text databases, resulting in summaries of the same general kind as those obtained earlier for the McGilloway database (see section 6.2).

6.4 Databases of visual features

The 19 points extracted from the face as explained in Section 4.2 reflect the configuration of the face at that moment, and therefore their locations depend on both the expression and the shape of that particular face. This fact, along with the limits of the static approach mentioned in Section 4.2, prompt us to obtain motion-dependent features, as these will be less dependent on idiosyncratic face structure.

[image: image35.png]From these 19 facial points, we compute 14 of the FAPs defined by some of their distance changes over time. This is shown in Figure 6.2, along with the distances used to normalize the face in order to have scale invariance (Eso and ENSo). Whereas the FDPs locate the position of the facial key-points in a common coordinates system, the FAP distances specify their positions relative to each other. To feed the classification systems information that relates only to the facial movements, the changes of these distances between frames are computed, as shown in table 6.2.

Figure 6.2. The 19 FDP points and the FAP distances they define, which time derivatives constitute the input to the fuzzy system. Eso and ENSo are the distances used for normalization.

FAP name
Features for description / Utilized feature
 Positive

Intensity

squeeze_l_eyebrow
f1 = s (1,3)

F1 = f1 - f1-REF
F1 < 0

squeeze_r_eyebrow
f1 = s (4,6)

F2 = f2 - f2-REF
F2 < 0

lower_t_midlip
f1 = s (16,30)

F3 = f3 – f3-REF
F3 < 0

raise_b_midlip
f1 = s (16,33)

F4 = f4 – f4-REF
F4 < 0

raise_l_i_eyebrow
f1 = s (3,8)

F5 = f5 – f5-REF
F5 > 0

raise_r_i_eyebrow
f1 = s (6,12)

F6 = f6 – f6-REF
F6 > 0

raise_l_o_eyebrow
f1 = s (1,7)

F7 = f7 – f7-REF
F7 > 0

raise_r_o_eyebrow
f1 = s (4,11)

F8 = f8 – f8-REF
F8 > 0

raise_l_m_eyebrow
f1 = s (2,7)

F9 = f9 – f9-REF
F9 > 0

raise_r_m_eyebrow
f1 = s (5,11)

F10 = f10 – f10-REF
F10 > 0

open_jaw
f1 = s (30,33)

F11 = f11 – f11-REF
F11 > 0

close_t_l_eyelid –

close_b_l_eyelid
f1 = s (9,10)

F12 = f12 – f12-REF
F12 < 0

close_t_r_eyelid –

close_b_r_eyelid
f1 = s (13,14)

F13 = f13 – f13-REF
F13 < 0

stretch_l_cornerlip –

stretch_r_cornerlip
f1 = s (28,29)

F14 = f14 – f14-REF
F14 > 0

squeeze_l_eyebrow 

& squeeze_r_eyebrow
f1 = s (3,6)

F15 = f15 – f15-REF
F15 < 0

Table 6.2: Description of FAP set using a subset of the MPEG-4 FDP set. Note: s(i,j)=Euclidean distance between FDPs i and j; REF is the frame used as reference and can be chosen as a neutral frame or the previous frame.

Thus we need to choose a frame which distances constitute references for the computation of increase or decrease of distances. Natural choices for the reference frame are either a frame with a neutral expression of the person, or the frame immediately preceding the current one. The former choice adds the difficulty of locating a neutral frame in the sequence, or at least a neutralish passage over which distances will be averaged so they can act as references. However this may be worthwhile since the resulting information will probably be more useful and reliable as long as the neutrality estimation process is robust. Absolute facial movements from a neutral position provide information about the current expression and do not depend on the video sampling rate; it is likely to be sufficient for emotion categorisation. On the other hand, we have to rely on the accumulation of evidence to guess the expression from FAPs computed between consecutive frames, because facial movements are not linear from the start to the apex of the expression. For instance, when the face remains with the same expression for 2 consecutive frames, all FAP values become 0 and do not provide us with any information regarding to the expression on the face: it could be a frozen smile as well as a still frown. Relying on the accumulation of evidence may make the algorithm more subject to the accumulation of error as well, but this could be counterbalanced by the fact that it takes more information into account, namely many consecutive changes, versus only one change from neutral. For these reasons both solutions were implemented, and several datasets are generated for a given video sequence.

Considering now the different FAPs, we can expect them to have widely different range values: the maximal amplitude of an eyebrow movement is much lower than that of the mouth, for instance. In order to get a more homogeneous data set, we can normalise every FAP with respect to the original distance value. That is, the FAPs express the proportion of increase or decrease of the distances. For instance, a value of .5 for FAP 12 means that the left eye is 50 % more opened in the current frame than in the reference (neutral or previous) frame. It can be important to have homogeneous feature values in a data set, because the variance of a feature relative to others usually affects the importance given to the feature in the decision process, and not necessarily in a way related to the relevance of the feature.

When the complexity of the classification algorithm is greatly affected by the number of parameters in the data set, it can be interesting to reduce that number. This is the case with fuzzy systems and PAC meditation. Assuming symmetry of the expression, we can reduce the 14 FAP inputs to 8 only, by keeping the most significant input (highest absolute value) of a symmetric pair. This allows the greatest –and probably most significant-- movement to be taken into account. The symmetry assumption holds for the basic expressions we consider in a first, small-scale version of the classification problem. However this will have to revised to process more complex, asymmetric expressions.

To summarise, 4 data sets can be generated for each sequence (FAPs relative to neutral versus previous frame, and absolute versus relative movement), and each of these datasets is available in its complete or reduced version (14 versus 8 FAPs). Future improvements of the system can include the definition of new FAPs. After inspection of emotional sequences, it became apparent that some attitudes (e.g., position of the head) are very revealing of the emotional state but not captured by any of these 14 FAPs, so the addition of 6 others is under examination, some being combinations of MPEG FAPs, some totally new.

6.5 Qualitative labelling 
We are currently developing a systematic approach to labelling the signs of emotion in each clip. This is designed to identify features that further analysis could usefully incorporate. 


Our aim is to develop a profiling system that covers both vocal and facial/gestural signs of emotion so that their relationships in naturally occurring emotion can be studied. Part of the task is to study how emotional signs are spread over time. Thus we distinguish two time domains – a global domain and a local or compact domain. Global signs are properties that are distributed throughout a clip - they may be relatively constant, e.g. high pitch, or they may be recurrent, e.g.regular repetition of the same pitch contour. That is the kinds of information that ASSESS is suited to extracting. Compact signs reveal the speaker’s state particularly sharply, e.g. a break in the voice, a tear or a combination of features. Recognising them may be more akin to recognising words, so that different methods would be appropriate. It is clear from the literature that both time domains are relevant in naturally occurring emotion, but the two are never very successfully related. Also of interest is the issue of consistency between modes in naturally occurring emotion. It is apparent that conflicting signs can co-occur (e.g. a smile though someone is clearly sad judging by the content). The labelling exercise is designed to clarify the kind of technique that may be needed to handle that kind of situation.

A labelling system was set up on the basis of relevant literature and our own observation. There are two main types of label – those concerned with manner of speech and those concerned with other signs. Manner of speech covers a large number of prosodic and paralinguistic labels based on those identified in Crystal (1969), Greasley et al (1995) and on our own observation. The main categories are pitch height, pitch change, voice quality, volume level, volume change, speech rate, pause duration, pause frequency, affect bursts, tune shape, rhythm, tension.  Each of these has a number of specified forms from which raters choose the one for which a clip is marked. ‘Other signs’ are broken down into verbal content, facial features, gestural signs. The particular labels within each of these categories have been based on facial/gestural features of emotion identified in the relevant literature and on our own observation, particularly in relation to gestural features where literature is scant. 

Raters label each clip with respect to manner of speech and other signs. They first apply the given labels to the clip in global terms. They then mark sections of the clip where there are local or compact signs and apply the given labels to these. Finally raters are asked to mark sections where there are conflicting messages conveyed in the different modes, e.g. smiling  face but sad content, and  to profile these in terms of manner of speech and other signs.

We have carried out a pilot study. Two raters (first and last authors) labelled emotional signs in a subset of the database. There was considerable agreement between the two raters in the pilot study, but the profiling system needs to be refined before it is applied to the whole database. Some labels need refinement, and there are relevant labels missing. The system is also currently done on paper in the form of a box ticking exercise for each clip. Plans are in hand to computerise it. The main feature of the program will be that raters will be presented with a nested set of options on screen. For example if the rater thinks the clip is marked in the manner of speech, he/she clicks on the option ‘manner of speech’ and a set of options is  provided – e.g. pitch height, volume level etc.  He /she then clicks on the relevant category and a further subset is provided e.g. low, mid, high . He/she clicks appropriately and moves on. The information is stored in numerical files which are easily accessible in spreadsheet form. This will allow manipulation of the data.

7. Classification using subsymbolic representations

The relevance to emotions of the generated representations described above is assessed by the classification performance they allow. Performance obviously depends also on the classification algorithm used, so many have been tried or are in the process of being explored. So far, the different classification methods have exclusively focused on the 5 or 6 basic emotions, to have a first general idea of the feasability of the approach. However, moving to a full-scale recognition of emotions implying the recognition of 10-20 emotions or the mapping of an expression to continuous variables (e.g. the activation/evaluation space) may not be as simple as refining the current methods.  For easy comparison with the latest techniques employed on the extracted features, results obtained with the lowest level subsymbolic coding (i.e., pixel intensities) and mentioned in a previous report [2] are reproduced in Section 7.3 and 7.4 .

7.1 Preliminary classification of McGilloway passages

This section presents the initial application of a number of interesting classification algorithms on the McGilloway data-base. As detailed in Section 2.3.1, the data-base consists of 195 records which were processed from speech recordings of 40 speakers which were asked to read 5 passages. Each passage corresponds to one of the five emotional states: fear, anger, happiness, sadness, and neutrality. Five out of the 5*40=200 possibilities are missing. The speech recordings are described by 400 features of which 32 features were pre-selected as being potentially relevant. We restricted our analysis to these 32 features. 

Section 7.1.1 gives a brief description of the methods that were tested. Section 7.1.2 then continues with the results. First we compare the classification performances of the different algorithms. Second, the best performing method was used to analyse the relevance of each input feature for the classification of emotions. We conclude the section with a discussion of the results.

7.1.1 Methods

Three classification algorithms were contrasted and tested. The first method, Support Vector Machines (see Schölkopf et al.), has empirically been shown to give good generalization performance on a wide variety of problems. In particular, SVMs show a competitive performance on problems where the data are sparse (many features, few data) and noisy as is the case with the ASSESS data-base. 

In Support Vector Machines one has the freedom to choose a similarity measure, which is a function which determines how similar two data examples are. In this study we tested two of these measures, namely a linear and a Gaussian similarity measure.

The second method, Generative Vector Quantization, has been developed recently by the KUN group (Westerdijk et al. 1999 and Westerdijk et al. 2000). It has been shown that this method gives a comparable performance with state-of-the-art classifiers (sigmoid belief networks, wake-sleep algorithm) on handwritten digit recognition. It outperforms standard methods such as nearest neighbour and back-prop on this problem.  The purpose of GVQ is to give a clear understandable representation of the structures that are present in the data. GVQ explains data examples by simple compositions of elementary features. 

The third method is the default classifier, namely linear discriminants. In linear discriminants the classes are separated simply by linear planes. This method only outperforms more complex methods if the data are too noisy to reveal any `higher order’ structure (non-linear dependencies, higher order-correlations, etc.).

7.1.2 Results

Classification

The data set was randomly split up into 10 parts with which 10 experiments were performed. In each experiment one part out of the 10 was used as a test set while the other 9 parts were used as training data.

In previous experiments gender information (whether the speaker is male or female) was not taken into account. To see if this information contributes to the discrimination of emotions we performed some experiments with and without the gender feature.

The average classification scores on the test are summarised in Table 7.1. The uncertainty values in the table are the standard deviations over the 10 experiments.


Test score (no gender)
Test score (gender)

Linear SVM
0.21 ( 0.05


Gaussian SVM
0.52 ( 0.1
0.51 ( 0.1

GVQ, 1 feature
0.43
0.43

GVQ, 2 features
0.34 ( 0.09
0.36 ( 0.09

Linear Discriminants
0.55 ( 0.08


Table 7.1: Classification performance for SVM, GVQ and Linear Discriminants, with and without gender information.

Relevance of ASSESS features

From the classification experiments we see that the Linear Discriminant method gives the best performance. Therefore, we have chosen this method for the `feature relevance’ experiments. 

The data set was randomly split up in 5 equally large parts. Lets call this partition A. Each of the 5 parts was successively used as an independent test set.  Each 4/5 subset of partition A was again split up into 5 subparts. This is partition B. On the 4/5 subset of partition B we trained 32 models for each of which we omitted one of the features. The scores were then compared on the remaining 1/5 part of partition B. The least relevant feature (this is the feature for which the score dropped the least) was then deleted from the feature set. To test the generalization performance, the corresponding best performing classifier was in addition tested on the 1/5 subset of partition A. With the 31 remaining features we trained 31 models on the same 4/5 part of partition B again omitting one feature for each classifier. The models were again compared and the least important feature was deleted from the feature set. We continued in this manner until only one feature remained (the most relevant feature).

The whole experiment was repeated 5 times training models on each 4/5 subset of partition A. Hence, in total we trained 5*(32 + 31+ 30 + … + 1)=5*33*32/2=2640 classifiers which took about 24 hours of CPU time. The test set scores (the scores on the 1/5 parts of partition A) at each stage of feature exclusion are shown in figure 7.1.


[image: image7.png]
Figure 7.1: Test set scores as a function of the number of eliminated input features.

Figure 7.2 shows the average ranking of each feature. The feature that was deleted last has the highest ranking (32). Since the experiment was performed 5 times we could compute the standard deviations of the rankings. These are plotted in the lower part of Figure 7.2. The 10 highest ranked features are described in Table 7.2.

[image: image36.png]Figure 7.2: Top panel: Input features ordered by their relevance. Most relevant feature is plotted at the right hand side. The vertical axis represents the ranking of each feature. For example: feature 14 (extreme right) has rank 32, which means that it is the most relevant feature since it is last one that was eliminated. The lower panel presents the standard deviations of these rankings (how much the ranking varied within the different cross validation). 

Number 
Description

14
Number of F0 points

11
IQR of amplitude minima

28
Median duration of F0 silences

4
Average energy in F0 region

10
Mean of amplitude minima

3
Number of inflicts

22
Median amplitude rise duration

16
IQR of all F0 points

13
IQR of amplitude fall height

18
IQR of F0 minima

Table 7.2: Description of the ten highest ranked features

7.1.3 Discussion

The analysis with both SVMs and GVQ (Table 7.1) shows that gender does not provide significant additional information to discriminate emotional states. This might be explained by the fact that gender is related to one of the other features (such as the means of F0, feature no. 15, 16th place in ranking). We should, however, not conclude that gender can therefore be omitted from future studies. As can be observed from figures 7.1 and 7.2 the classification score varies smoothly with the number of included features. Hence, there exist no single feature, which can clearly be identified as being critical for classification. Instead, the figures show that the features only jointly provide significant information. Perhaps the effects of individual features will be more pronounced if additional data becomes available.

Increasing the complexity of a classifier has a negative effect on the test set score. In the analysis with GVQ we increased the number of features from 1 to 2. A GVQ model with only one feature is equivalent to linear separation. Including an additional feature allows a larger class of separating surfaces. As we see the test set error then increases significantly indicating that the model is overfitting the data. 

The highest score was obtained with linear discriminants. This method is closely related to a 1 feature GVQ model. The reason that linear discriminants achieve a better performance is that complexity linear discriminants is even further restricted by using a `weight decay parameter’. A weight decay parameter constrains the separating planes to be close to axis parallel.

The success of linear discriminants compared with more complicated models shows, that the McGilloway data-base is too sparse, by which we mean that there are too few data points described by too many features which effectively start to act as sources of noise, to find any higher order structure which can be used to discriminate between emotions.

7.2 Preliminary classification results on a reduced set of sentences

The features extracted from the speech signal by ASSESS are used by a hybrid classification procedure employing two stages of processing: a sub-symbolic stage consisting of a perceptron with three layers, trained with the back-propagation of error procedure, and a symbolic stage, built on the PAC learning paradigm for Boolean function. Since the relevance of the numerous statistical features for classification is unknown, a feature selection method is applied to the raw data to determine the most important features, thereby simplifying the resulting rule base, and speeding up the processing time. In the proposed two-stage architecture, this was achieved by successively pruning weights in the sub-symbolic stage, and the subsequent relearning of the mapping. The learning procedure first generates a set of random bipolar propositional variables in the output layer of the perceptron for each input example. For the emotion recognition task, the size of the propositional vector was set to 20 units, equal to the number of continuous hidden layer neurons. 

The initial mapping from feature values to propositional variables is created using an additional output layer, which mirrors the feature vector, thereby enhancing the sensitivity of the resulting mapping. When a stable configuration emerges, representing each input example as a distinct pattern of the propositional vector, the examples and counterexamples for each class are delivered to the PAC meditation stage, where the symbolic description of the data is calculated. The next section gives an overview of the theory using PAC meditation to combine symbolic and subsymbolic learning, and the full details can be found in report WP5 [3].

7.2.1 PAC meditation

The propositional vectors describe the data in terms of properties that must be owned by an observed point in the feature space in order to be classified as a positive point, or properties whose absence qualify the point as negative. The building paradigm of the symbolic abstraction procedure is much reminiscent of the sub-symbolical structure of a multi-layer perceptron. Indeed we flow the extracted formulas through layers of increasing structural complexity that we call abstraction levels, and the whole procedure is called PAC meditation.

The key points are the following. 

1. Assume we have decided to describe the set of positive points through the intersection of monotone clauses. This accounts for assuming that the underlying formula that generated our positive points was a monotone formula. Moreover, to avoid excluding positive points we use the maximal clauses consistent with the sampled points. 

This means that if a sampled negative point  is 100101, we will intersect our formula with the clause c = v2+v3+v5. It is easy to see by inspection that no clause with broader support can exclude π. Thus this point acts as a sentinel of c, in the sense that if a clause c' tries to invade c (i.e. to include the support of c into its own support)  recognize it since itself is included in c'. Essentially  is in the interstice between the supports of c and c'. We could focus on other points to obtain this sentinelling action but {} is the minimal set of points, we will call it the frontier that is able to sentinel c against whatever invading clauses. For a formal definition of sentry points for every class of Boolean formulas see Apolloni and Malchiodi (1999) and Apolloni and Chiaravalli.

2. In the adopted paradigm the goal is to describe through a Boolean formula both the set of observed positive and negative points and the set of points that we will meet in the future, obeying to the same distribution law. This accounts for learning the above formula from the observed points where this inference is successful if the probability measure of the set of points on which our learnt formula fails is very low with high confidence. 

3. We expect to increasingly gain knowledge on the shape of the wanted Boolean formula, which we call the concept. On the basis of the iterated information we build two families of formulas, that we call inner and outer borders, deputed to delimit an interstice where to locate the possible approximation of the concept, thus consistent both with the observed point and with the constraints raised by this information. Therefore, in place of sentinelling the wrong region (namely the symmetric difference between hypothesis and concept) we sentinel as described in point 1 the family of outer borders (by outer sentry points) and similarly from inside the inner border. For instance if the inner border is constituted by the union of monotone monomials, we can associate to each positive point π (e.g. 110011) a monomial m (in this case v1v2v5v6) that results in the minimal monomial containing π; consequently π is an inner sentinel for m. Namely, no m' ≠ m can contain π and be included in m.

4. To increase the structural complexity of the borders to meet the complexity of the concept, we use a compositional rule. We start from the inner border constituted by union of monomials, and the outer border constituted respectively by the intersection of clauses as outlined above. Considering the simple union of the two monomials [image: image8.wmf]v
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, we obtain a new monomial where literals are constituted by clauses, and in turn literals within the clauses are substituted by monomials. We call this construct a hypermonomial, consisting of the intersection of hyperclauses. We generalize the operation by keeping groups of at most k1 monomials and splitting them in such a way that each hyperclause contains at most k2 terms. This operation represents an abstraction jump, and at this new abstraction level, the frontier is created by the union of such complex formulas. Bounds on k’s stand for requisites of conciseness on the formula description, i.e. for a compression of our knowledge, which is the focus of our learning algorithm. 

A similar operation can be done on outer frontier considering intersection of clauses.

By iterating this procedure we obtain two universal families of borders containing in its interstice any consistent monotone formula for a proper choice of k’s. 

5. The information management policy of this procedure is to maintain attention just on the minimal set of sentries that we need. This realizes the target of avoiding information waste that we specify as follows. Starting at level 0 from the set of positive (negative) points we build a set of canonical monomials (clauses) as above, such that these points are their inner (outer) sentinels. Now, to render this prerogative proof against any other consistent association of monomials to inner points, we must fix these examples as sentry points of the largest expansions of canonical monomials (narrowing of canonical clauses) that result, still consistent with negative (positive) points. Thus, consider we have synthesized the inner frontier through a set of 7 monomials. Then we try to get a better description by grouping these monomials in subsets of 3 monomials each (k1=3) in such a way that each resulting clause (after the application of the distributive rule as above) contains at most k2=5 monomials. To preserve the sentinelling functionality we stretch again our hypermonomials, enlarging them until consistency is not violated. This enlargement may happen since, changing the class of formulas whose union or intersection represent the borders, allows a fragmentation of literals: we pass from the extreme case with k1=k2=1 where new formulas coincide with the previous ones, to the other extreme with unbounded k’s, where inner border goes to coincide with the other border. For any intermediate choice of k’s, a possible consequence is that some sentinelling points become useless. This means that, starting from total ignorance where all monomials from observed positive examples are used to sentinel the unknown formula, the constraints on the k’s allows us to reduce the number of sentinels. However, what we expect is that if a hypemonomial (hperclause) is sentinelled by a set of monomials (clauses) which in their own turn are sentinelled by a given set of positive (negative) points, then the same formula is directly sentinelled by exactly this set of points.

Seeing the whole process from another perspective, we might refer to a mental process where, starting from a labelled assignment to propositional variables we draw a set of boundary properties in terms of concise canonical Boolean forms consistent with the assignments. Then we give names to these properties and search for a canonical combination of them to get more concise higher-level properties, and so on. This more structured description of the class of formulas requires a deeper a-priori knowledge on the phenomenon we are trying to learn about in order to set the k1 and k2 parameters. Our methodological constraint is that, once we got a formula composed of an inner or outer border, this formula is sentinelled by the same set of observed points, whatever the properties and abstraction level we use to describe it.

A numerical procedure is available to implement the above meditation process that runs in polynomial time in the number of positive and negative observed points. Moreover, using techniques from computational learning we can hit the target of maintaining the probability measure of the misclassification region (the symmetric difference between concept and hypothesis) below a given threshold  with a confidence 1-, when the number of the observed point is a suitable polynomial in  and  Thus the symbolical manipulation of binary vectors coming from the connectionist part of the system is feasible, as it concerns the size of the training set and the involved computational resources.

The result of the symbolic abstraction process is then fed back to the sub-symbolic stage to improve the mapping by changing propositional variables that are inconsistent. After termination of this feedback loop, the mirroring vector is no longer needed and is removed. Finally, the mapping is pruned to allow the extraction of dependencies between input variables and the binary variables of the propositional vector. Figure 7.3 shows the learning error and the number of ones and zeroes during the initial 500 iterations of the sub-symbolic learning process, specifying the optimised representation of examples by the binary propositional variables.

    
  [image: image10.wmf]
Figure 7.3: Learning error of the back-propagation procedure (decaying line) and the number of ones and zeroes of the propositional vectors for the first 400 iterations; the increase of the learning error after 300 iterations is induced by the feedback from the symbolic stage, which forces the sub-symbolic stage to change some of the prepositional vectors.

7.2.2 Comparison of performance by PAC, SVM and C4.5

To examine the generalization potential of the prosodic speech features extracted by ASSESS, a study on a database of emotional speech was performed. The input was generated from seven four-second sentences, spoken by three subjects in a normal voice and with the six emotions Anger, Happiness, Sadness, Disgust, Surprise, and Fear. Each sentence was broken up into four slices of equal length, with small overlaps compensating for the different durations, resulting in 588 training patterns. Previous studies identified the statistical measurements extracted from the amplitude and the fundamental frequency (F0) as the most useful features for emotion recognition (Cowie and Douglas-Cowie, 1996; Banse and Scherer, 1996; Dellart et al., 1996). Therefore, a reduced set of features, depicted in Table 7.3, was used for the recognition task. The extracted measurements consists of the mean, median, and inter-quantile of the maximum (max) and the minimum (min), the numbers of extremes (max’n’min), rises, falls, top and bottom plateaus, and the durations of the rises and falls, for both amplitude and fundamental frequency, respectively. Following the normalization of the features to bipolar values and removing of five non-informative features, the remaining 73 feature values were used to train the hybrid system. The system converged to a consistent mapping of features to propositional variables after 800 learning steps for the 336 examples, involving multiple feedbacks from the symbolic stage to change some inconsistent vectors. The system was subsequently tested on three withhold test sentences revealing an overall error of 33% false classifications (first row of Table 7.5).

                 Amplitude statistics

       Fundamental Frequency statististics

1
psg_stat mean
19
rs'n'fl mean
37
psg_stat mean
55
rs'n'fl mean

2
psg_stat median
20
rs'n'fl median
38
psg_stat median
56
rs'n'fl median

3
psg_stat quant
21
rs'n'fl quant
39
psg_stat quant
57
rs'n'fl quant

4
max mean

top plat mean
40
max mean
58
top plat mean

5
max median
22
top plat median
41
max median
59
top plat median

6
max quant
23
top plat quant
42
max quant
60
top plat quant

7
min mean

botm plat mean
43
min mean

botm plat mean

8
min median
24
botm plat median
44
min median
61
botm plat median

9
min quant
25
botm plat quant
45
min quant
62
botm plat quant

10
mx'n'mn mean

plateaux mean
46
mx'n'mn mean

plateaux mean

11
mx'n'mn median
26
plateaux median
47
mx'n'mn median
63
plateaux median

12
mx'n'mn quant
27
plateaux quant
48
mx'n'mn quant
64
plateaux quant

13
rises mean
28
r. dur's mean
49
rises mean
65
r. dur's mean

14
rises median
29
r. dur's median
50
rises median
66
r. dur's median

15
rises quant
30
r. dur's quant
51
rises quant
67
r. dur's quant

16
falls mean
31
f. dur's mean
52
falls mean
68
f. dur's mean

17
falls median
32
f. dur's median
53
falls median
69
f. dur's median

18
falls quant
33
f. dur's quant
54
falls quant
70
f. dur's quant



34
rf. dur's mean


71
rf. dur's mean



35
rf. dur's median


72
rf. dur's median



36
rf. Dur's quant


73
rf. dur's quant

Table 7.3: Reduced set of statistical features extracted by ASSESS from the speech signal. Rows without numbers indicate uninformative features.

Further, the descriptive statistics of the speech signal were used as training examples by two classification procedures. The C4.5 algorithm (Quinlan, 1993) was used to build a decision tree for the normalized feature-set. The pruned tree was tested on further examples to probe the ability to generalize. Table 7.4 shows the confusion of error matrix of the decision tree, which was built using four example sentences, and tested on the remaining three sentences. The average error was about 25%, with the largest contribution from Surprise. For comparison with its learning capabilities, we used the C4.5 algorithm with a 10-fold cross-validation procedure (Witten and Frank, 2000), where the whole example set was used to extract the decision tree, and testing was performed on a smaller test set. Only 5% error (third row in Table 7.5) were obtained then. As a comparison for generalisation, we trained a support vector machine (Vapnik, 1995; Lin, 1999) on four example sentences and tested it on the remaining three. The overall errors listed in the fourth row of Table 7.5 show that PAC meditation performs almost as well as the other classifiers, reflecting the small cost paid in classification to gain the explanation capability.
Category
Neutral
Happy
Angry
Sad
Disgusted
Surprised
Fearful
Error

Neutral
20
0
0
0
4
0
0
16.67%

Happy
2
15
2
0
0
2
0
28.57%

Angry
2
0
22
0
0
0
0
 8.33%

Sad
4
0
2
16
0
2
0
33.33%

Disgusted
2
2
0
0
20
0
0
16.67%

Surprised
0
4
2
6
0
12
0
50.0%

Fearful
2
2
2
2
2
0
14
41.66%









27.88%

Table 7.4: Error confusion matrix for 165 test utterances, using the C4.5 classification procedure trained on 420 utterances.

Category
Neutral
Happy
Angry
Sad
Disgusted
Surprised
Fearful
Error

PAC med
19.72%
35.23%
12.5%
38.12%
25.0%
56.86%
46.36%
33.39%

C4.5 
16.67%
28.57%
8.33%
33.33%
16.67%
50.0%
41.66%
27.88%

C4.5 cv
 2.4%
 6.4%
 3.6%
 2.4%
 7.1%
 7.1%
 6.0%
 5.0% (*)

SVM
15.48%
29.76%
17.86%
51.19%
14.29%
21.43%
17.86%
23.98%

Table 7.5: Preliminary comparison of errors by different learning algorithms for generalisation and learning (*).

7.3 Classification of static facial images using templates

Classification of faces using static images has been reported in [2]. For comparison purposes, we reproduce some of the results here and in the next section.

The images in each emotional expression class were summed up and normalized to produce a generic template. Figure 7.4 shows the four extracted templates which correspond to neutral, angry, happy, and sad expressions, respectively. 

[image: image11.png]
Figure 7.4: Emotion templates generated by averaging over all 16 different face images of the data-set. From left to right: neutral, angry, happy, and sad.

Although the templates are well defined and the exposed expression can be recognized by humans, the classification performance on the training-set was only 75%, which corresponds to three correct classifications out of four. In a further study the generalization performance to unseen images was examined, using a cross-validation procedure where one person was left out during the averaging and subsequently testing the left-out images on the emotion templates. The generalization performance only reached about 50% correct classifications, indicating the limited use of the averaged templates for general expression classification. A closer examination of the classification errors revealed small misalignments of the face images caused by head tilt during the exposure of the expressions, which was not compensated in the normalization procedure, and the individual peculiarity in emotion expression.
7.4 Classification of static facial images using MLP

The use of supervised learning techniques employing a multi-layer perceptron (MLP) for face recognition and face perception has been adopted in many systems (Gray et al., 1995; Intrator et al., 1996). The general idea is to use a feedforward neural network with one or more inter-mediate layers which are fully connected to an output layer, where each output neuron represents one predefined  target output, and  the system is allowed to selforganize the appropriate weights between input to hidden layer, and hidden to output layer by minimising the error at the clamped output units. This is usually achieved by the powerful backpropagation of error algorithm, which gradually decreases the overall error for all known input to output combinations by adjusting the intermediate weights of the network. The output units can represent each individual for a face recognition task, or physical categories like female and male in a gender recognition task (Gray et al., 1995). We modified a MLP network with four output units and a hidden layer to extract the facial expressions from the CMU data-set (see Section 2.1). This image set was split into a training set containing nine images, and two further sets for validation and testing of size five each.

7.4.1
Classification performance of the MLP

After about 850 learning cycles using the backpropagation of error algorithm the network with 35x37 input units, 20 hidden units, and four output units converged, and was able to recognise all expressions from the training set with 100% accuracy. The generalization performance was tested with 5 unseen images from the test set, and reached up to 78% correct classification of the exposed expressions. Since 25% correct is chance level, the network can classify three out of four, which is a remarkable performance considering the variation in interpersonal emotion expression and the intra-personal similarity of some of the face images.  However, if the test set was chosen at random in a cross-validation study, lower levels of generalization performance were measured (about 40-60% correct classification). Depicted in Figure 7.5 are the 20 images of the learned weights of the hidden neurons of the (1295, 20, 4) - MLP network. Some of the images have been inverted to reveal a more realistic impression of the extracted features. Compared to eigenfaces generated by a principal components analysis approach, the hidden layer representation of the MLP is less tuned to the individual facial details of the training-set, but is more related to the emotional content of the face images. This is apparent from the light and dark shades around the wrinkles of the mouth, indicating the importance of this feature for emotion classification (e.g. the first, fourth, and last image in the upper row). Another apparent feature is the position of the eyebrows, which indicates an angry facial expression (e.g. the third image in the upper row and the last image).

[image: image12.png]
Figure 7.5: Weights of 20 hidden layer neurons of a MLP-network of size (1295x20x4) for recognising the facial expressions neutral, angry, happy, and sad.

7.4.2 Compression of the representation

In a second study we reduced the hidden layer representation to five neurons to reveal the most critical features needed for facial emotion classification from static images. Again the MLP-network converged after 800 iterations, reaching 100% correct classification performance on the images from the training set. The compression ratio for the reduced hidden layer representation is 64/5 = 12.8, since all images from the training-set can be correctly classified. The generalization performance was comparable to the previous network with 20 hidden neurons, but the hidden layer representation depicted in Figure 7.6 shows a more defined feature set. The third and fourth neurons show similarity to an ‘eyebrow’-detector, which is an important feature for face expression recognition. Closer inspection of the position of both eyebrows show a small displacement upwards for the third and downwards for the forth neuron compared to the average face. Both displacements correspond to happy and angry expressions, respectively, which is apparent from the distribution of the neuron‘s weights. The first and the last neuron are selective for regions of the mouth and seem to measure the curvature of the lips. This feature is present in most of the images of hidden layer neurons trained in the expression recognition task, suggesting its general importance for face expression perception. The rotation visible in the second image is caused by the rotation of some of the training faces and displays the perturbation of the network weights by an artifact.

[image: image13.png]
Figure 7.6: Weights of five hidden layer neurons of a MLP-network of size (1295x5x4) for recognizing the facial expressions neutral, angry, happy, and sad.
7.4.3 Preprocessing by Gabor-Wavelets

To improve the generalization performance of the MLP-network we introduced a preprocessing stage, which consists of filtering the face images with a set of oriented quadrature phase Gabor-wavelets (Daugman, 1988; Buhmann et al., 1989). The response of the 12 oriented Gabor-wavelets to a neutral face from the data-set is depicted in Figure 7.7, and the response to a happy facial expression of the same person is shown in Figure 7.8. As can be seen from the orientation maps, most facial expression information is contained in the horizontal filter responses of the mouth and the eyebrows, although some important information may as well be found in the adjacent feature-maps. For example, the upward movement of the mouth during a smile can easily be detected in the orientation maps next to the horizontal map. However, the vertical orientation does not contribute as much as the horizontal ones and could be left out to speed up the learning procedure.

[image: image14.png]
Figure 7.7: Preprocessed face image exposing a neutral expression by filtering the image with six oriented odd-symmetric Gabor wavelets (upper row) and six even-symmetric wavelets (lower row). White shades correspond to a positive filter response, black to a negative response, gray corresponds to zero level.

[image: image15.png]
Figure 7.8: Preprocessed face exposing a happy expression, (see Figure 7.7 for details).

The training procedure for the MLP-network was the same as before, but now the 12 feature maps for the face images were used as the training input to the network. As before, the converged network was able to correctly classify all images from the training-set. A sample image of a hidden neuron is depicted in Figure 7.9, showing the adoption of the Gabor-wavelet representation of the input by the hidden layer neurons. However, no improvements on the generalization performance to novel images were observed. 

[image: image16.png]
Figure 7.9: Weights of a single hidden layer neuron of an MLP-network of size (14700x5x4) using the Gabor-filtered face images as training patterns.

7.5 Classification of faces using FAPs from videos

For all the results reported in this section, the 8-dimensional feature vectors described in Section 6.4 were used. As this is the smallest set of features computed per frame, this should give us some clues as to what range of performance can possibly be achieved with that minimal information. Furthermore, the limits of the automatic feature points detection algorithm imply that all FAPs may not be available for all frames, and working with this data set means we are making minimal assumptions regarding the completeness of the outcome of the detection algorithm.

7.5.1 Template approach

The input values of the frames are averaged for each category, to obtain five 8-dimensional template vectors. Then, for each frame, a correlation coefficient is computed with each template, giving a degree of belief that the frame belongs to each category. The frame is classified in the category which template correlates the most with its inputs. The classification rate for each expression is detailed in Table 7.6. This method classifies correctly 70% of the frames, but this drops to 60% when tested on generalization with the leave-one-(sequence-)out method.

7.5.2 Fuzzy inference systems

The continuity of the emotion space as well as the uncertainty involved in the feature estimation process, whether automatic or manual, make the use of fuzzy logic appropriate for the feature-to-emotion mapping. The input is the same as above, an 8-tuple for each frame, which components describe the increment (or decrement) of the corresponding FAP. The system is in fact made up of 5 subsystems, one for each category. Each subsystem outputs a value reflecting the degree of belief that the frame belongs to the corresponding category. Each subsystem has 8 Input Membership Functions (MF), which define a fuzzy linguistic partition on each input: it qualifies the input as being ‘Low’ or ‘High’ with a certain degree of confidence. The linguistic terms of the fuzzy partitions (for example medium open_jaw) are then connected with the aid of the IF-THEN rules of the Rule Base. The activation of the antecedents of a rule causes the activation of the consequences, i.e. the degree of belief that the emotion is X concluded from the degree of the increment (or decrement) of the FAPs after the stages of fuzzification and fuzzy inference. This is done for all 5 expressions and the expression with the highest degree of belief is considered the winner.

Based on this structure, we can build many different systems by choosing different MFs or different rules; we experiment here with three of them. The first one uses trapezoidal MFs, which in fact behave like Boolean gate functions. This makes the fuzzy system a special case where it degenerates into a Boolean system. The value associated to an input is maximal when it is within the min-Max limits of this input over all the frames of a particular expressions, otherwise 0. The rule giving a high degree of belief to the expression is a conjunction of all the MFs: a frame is given the highest degree of belief if all its inputs are within the acceptable range for that expression. By construction, this system accepts all the frames in their correct category. Only, when a frame is compatible with several expressions, the same high degree of belief is given to these, and we have many ambiguous predictions, with 2, 3 or even 4 categories at the same time regarded as being exactly as possible. The row ‘Ties’ in Table 7.6 shows the proportion of the frames that could not yield a unique and clear prediction.

The second fuzzy system uses the full range of fuzzy values through the use of triangular MFs, bounded by the same min and Max values as above but peaking only for an input value equal to the template (average) value of this input. The rules are the same as above, and classify 77% of the frames correctly.

The third fuzzy system was designed to test whether we can predict expressions based on only one feature, the one that distinguishes best between the given expression and all the others (e.g., width of the mouth for ‘Smile’). The MF used are also triangular: using trapezoidal MFs on only one input would give too many possible responses but using the whole range of fuzzy values disambiguates the predictions. Only 48% of the frames are classified correctly, which suggests that considering only the most significant input of each expression does not provide enough information to classify the frames accurately.

7.5.3 From frame to sequence classification

Table 7.6 shows the performance of the different systems for each expression. The classifications of the systems were recorded for all frames after the first (neutral) one for each of the 20 video sequences, totaling 192. The number of frames varied with each sequence. Besides the performance of the one-feature-only-based fuzzy system, the average classification rate was acceptable, around 70-75% for the template approach and properly fuzzy system. Most of the errors come from confusions between anger and disgust. Even human judgment is ambiguous on some of these sequences. On the other hand, the ‘Boolean’ fuzzy system achieves 100% classification by construction, but gives many ambiguous predictions, unlike the other systems. However it yields enough information to classify the sequences with perfect accuracy, as explained below. As the sequence unfolds (the expression becomes more pronounced, getting close to the apex), the number of correct unique classifications rises steadily, whereas the number of ambiguous classifications generally decreases.

Once all the frames of a sequence have been classified, we need one resulting global prediction for the whole sequence. Three methods have been explored here: 1) Summing the degrees of belief for each expression over the whole sequence, and choosing the highest total. 2)Considering only the winning category for each frame, and choosing the category with the most wins over the sequence. 3) Replacing the degrees of belief by their rank in decreasing order, and choosing the category that minimizes the rank summed over the sequence.

The results obtained by these three methods are in general very consistent, they all classify the same number of sequences, plus or minus one. The last column of Table 7.6 gives the range of performance obtained with these 3 methods.  Only the ‘Boolean’ fuzzy system reaches perfect classification, with only one disgust sequence classified ambiguously as disgust or anger. Considering the time course of the predictions as the sequence unfolds, the properly fuzzy system needs only half the sequence to classify, whereas the other approaches need up to 3/4 of the sequence. The template method identified surprise and raise brows early in the sequence, whereas those are the latest to be recognized by the Boolean/fuzzy system. This points to the complementarity of those 2 methods: the former depends on positive clues for classification, the latter works more by elimination until all candidate expressions are reduced to only one. Thus the optimal method suggested by those results is that we should use the fuzzy system with triangular MF for early prediction, then confirm that choice with the trapezoidal MF fuzzy system.


Anger

(40 frames)
Smile

(60 frames)
Disgust

(26 frames)
Raise Brows

(18 frames)
Surprise

(48 frames)
Range of

Sequence correct

Template
.55
.75
.62
.89
.73
75 – 85 %

Fuzzy (one_input)
.48
.62
.50
.28
.35
40 – 70 %

Fuzzy (MF=tri)
.85
.88
.73
.22
.81
70 – 90%

Fuzzy (MF=trap)
1.00
1.00
1.00
1.00
1.00
95 – 100 %

Ties
0.40
0.40
0.50
0.67
0.17


Table 7.6: Compared performance of the template approach and the 3 fuzzy systems, for frames and sequence classifications.

7.6 Summary

We have applied a wide range of techniques to the recognition of emotional speech, such as Support Vector Machines, Generative Vector Quantization, Linear Discriminants, the C4.5 algorithm, and the PAC meditation developed within the PHYSTA framework. We have shown that certain statistical information extracted from the speech signal can be used for the classification of emotional speech. Moreover, PAC meditation has the potential to formalise explanations to justify the classification decision. To this end, the new hybrid learning procedure uses a sub-symbolic stage for mapping features to propositional variables, and a symbolic stage for the extraction of Boolean formulas representing the inner and outer frontiers of the derived concepts. A comparison of the generalisation ability of the proposed network with classical neural network and machine learning techniques indicate the usefulness of the PAC meditation framework for emotion recognition.

Regarding the classification of facial emotions, purely subsymbolic techniques have shown limited results. Preprocessing the facial image to extract key movements of the face yields good information for classification, in particular with fuzzy systems.

Whether attempting to classify speech extract or facial images, reaching a very high generalisation performance constitutes a quite hard problem. This may also be due to the fact that many expressions are ambiguous even for humans. The stimuli used for our results were in general extreme expressions, gathered in a well controlled environment under optimal conditions. Attempting to classify more natural stimuli into more categories, or mapping them to continuous variables may prove even more difficult. Nevertheless working with whole video sequences yielded promising results by allowing the accumulation and combination of evidence over several frames. The integration of the results from both speech and video is a challenging problem and the complementarity of these two channels holds the potential for a drastic improvement of generalisation performance.

8 Overview

Upon considering in the introduction the difficulties inherent to the task chosen as the application of the PHYSTA project, we concluded that we needed to gather our own databases so they would be ecologically valid and complete, covering the whole range of emotions we are likely to encounter in an everyday context. Section 2 describes the speech and audio-visual databases we produced, as well as small-scale databases used for preliminary work. Further, the lack of a unified psychological theory of emotions made it necessary to develop our own tools for emotion description as well. Two complementary methods are described in Section 5, that can be seen as providing symbolic and subsymbolic descriptions of emotions, respectively: BEEVer produced a list of words that can be used to label commonly encountered emotions, and FEELTRACE enables the rating over time of any stimulus by a subject in the continuous 2-dimensional activation/evaluation emotion space. After being thoroughly tested, the latter is currently used with many subjects for the rating of video clips in order to provide the desired output needed by the automatic system in order to learn how to recognize emotions.

Both speech and audio-visual recordings contain huge amounts of information, which has to be reduced to a minimum for optimal further processing, while capturing the essence of the emotion to allow the best possible recognition. Section 3 describes how the ASSESS system extracts numerous features from speech. Sections 7.1 and 7.2 show how to choose the most significant features relevant for categorisation. Section 4 describes the preprocessing applied to face images to compute the movements of the most characteristic facial parts, namely of the mouth, eyes and eyebrows. Both softwares were used to produce higher-order feature databases, described in Section 6.

Finally, Section 7 explores numerous methods for the recognition of emotions from these features.

Previous PHYSTA reports and a description of the facial features extraction procedure are available at http://www.image.ntua.gr/physta.
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